
Documentation 1.8

ZABBIX

30.04.2024

Contents

Zabbix Manual 7
Copyright notice . 7

1 About . 7
1 Overview of Zabbix . 7
2 Goals and Principles . 8
3 Installation and Upgrade Notes . 8
4. What’s new in Zabbix 1.8 . 11
5 What’s new in Zabbix 1.8.1 . 23
6 What’s new in Zabbix 1.8.2 . 25
7 What’s new in Zabbix 1.8.3 . 31
8 What’s new in Zabbix 1.8.4 . 47
9 What’s new in Zabbix 1.8.5 . 52
10 What’s new in Zabbix 1.8.6 . 54
11 What’s new in Zabbix 1.8.7 . 55
11 What’s new in Zabbix 1.8.8 . 56
11 What’s new in Zabbix 1.8.9 . 56
12 What’s new in Zabbix 1.8.10 . 57
13 What’s new in Zabbix 1.8.11 . 58
14 What’s new in Zabbix 1.8.12 . 58
15 What’s new in Zabbix 1.8.13 . 58
15 What’s new in Zabbix 1.8.14 . 59
16 What’s new in Zabbix 1.8.15 . 59
17 What’s new in Zabbix 1.8.16 . 59
18 What’s new in Zabbix 1.8.17 . 59
19 What’s new in Zabbix 1.8.18 . 59
20 What’s new in Zabbix 1.8.20 . 60
21 What’s new in Zabbix 1.8.21 . 60
22 What’s new in Zabbix 1.8.22 . 60

2 Installation . 60
1 How to Get Zabbix . 60
2 Requirements . 60
3 Components . 64
4 Installation from Source . 64
5 Upgrading . 79
6 Using Zabbix appliance . 79

3 Zabbix Processes . 83
1 Zabbix Server . 84
2 Zabbix Proxy . 89
3 Zabbix Agent (UNIX, Standalone daemon) . 94
4 Zabbix Agent (UNIX, Inetd version) . 98
5 Zabbix Agent (Windows) . 99
6 Zabbix Sender (UNIX) . 105
7 Zabbix Get (UNIX) . 105
8 Special notes on ”Include” configuration parameter . 106

4 Configuration . 106
1 Actions . 106
2 Macros . 111
3 Applications . 126
4 Graphs . 126
5 Media . 127

1

6 Host templates . 127
7 Host groups . 128
8 Host and trigger dependencies . 128
10 User Parameters . 128
11 Windows performance counters . 130
12 Triggers . 131
13 Screens and Slide Shows . 142
14 IT Services . 143
15 User permissions . 146
16 The Queue . 146
17 Utilities . 148
18 Regular expressions . 148
19 Items . 148
20 Frontend definitions . 190
21 Suffixes . 191
22 Time period specification . 192

5 Quick Start Guide . 192
1 Login . 193
2 Add user . 193
3 Email settings . 196
4 Monitoring an agent-enabled host . 197
5 Set up notifications . 202

6 XML Import and Export . 204
1 Goals . 204
2 Overview . 204
3 Host export . 205
4 Host import . 208
5 Map export and import . 209
6 Screen export and import . 214

7 Tutorials . 219
1 Extending Zabbix Agents . 219
2 Monitoring of log files . 220
3 Remote commands . 220
4 Monitoring of Windows Services . 222

9 WEB Monitoring . 222
1 Goals . 222
2 Overview . 223
3 WEB Scenario . 223
4 WEB Step . 224
5 Real life scenario . 225

10 Log File Monitoring . 230
1 Overview . 230
2 How it works . 230

11 Discovery . 231
1 Goals . 231
2 Overview . 231
3 How it works . 232
4 Network discovery rule . 232
5 Real life scenario . 233

12 Advanced SNMP Monitoring . 235
1 Special OIDs . 235
2 Use of dynamic indexes . 237

13 Monitoring of IPMI devices . 238
1 Goals . 238
2 IPMI parameters . 238
3 IPMI actions . 238

14 Use of Proxies . 238
1 Why use Proxy? . 238
2 Proxy v.s. Node . 239
3 Configuration . 239

15 Distributed Monitoring . 240
1 Goals . 240
2 Overview . 240

2

3 Configuration . 240
4 Platform independence . 245
5 Configuration of a single Node . 245
6 Switching between nodes . 246
7 Data flow . 246
8 Performance considerations . 247

16 Maintenance mode for Zabbix GUI . 247
1 Goals . 247
2 Configuration . 247
3 How it looks like . 247

17 WEB Interface . 248
1 Creating your own theme . 248
2 Configuration . 249
3 Administration . 280
4 Page parameters . 304

18 Performance Tuning . 305
1 Real world configuration . 305
2 Performance tuning . 305

19 Cookbook . 306
1 General Recipes . 306
2 Monitoring of Specific Applications . 306
3 Integration . 308

20 Troubleshooting . 309
1 Error and warning messages . 309
2 Sound in browsers . 310

21 Escalations and repeated notifications . 310
1 Overview . 311
2 Simple messages . 311
3 Remote commands . 312
4 Repeated notifications . 313
5 Delayed notifications . 314
6 Escalate to Boss . 315
7 Complex scenario . 316

Zabbix API 317
Action . 317

create() . 318
delete() . 320
exists() . 321
get() . 322
update() . 324

Alert . 325
get() . 326

APIInfo . 327
version() . 327

Application . 328
create() . 328
delete() . 329
exists() . 330
get() . 331
massAdd() . 333
update() . 333

DCheck . 334
get() . 335

DHost . 336
delete() . 336
get() . 337

DRule . 338
create() . 339
delete() . 339
exists() . 339
get() . 339
update() . 341

3

DService . 341
create() . 341
delete() . 341
exists() . 341
get() . 341
update() . 343

Event . 343
acknowledge() . 344
delete() . 345
get() . 346

Graph . 348
create() . 349
delete() . 351
exists() . 352
get() . 352
update() . 354

Graphitem . 355
get() . 356

History . 357
delete() . 358
get() . 358

Host . 359
create() . 360
delete() . 361
exists() . 362
get() . 363
massAdd() . 366
massRemove() . 367
massUpdate() . 367
update() . 368

Hostgroup . 370
create() . 371
delete() . 372
exists() . 373
get() . 374
massAdd() . 375
massRemove() . 376
massUpdate() . 377
update() . 378

Image . 378
create() . 379
delete() . 380
exists() . 381
get() . 381
update() . 383

Item . 383
create() . 386
delete() . 386
exists() . 387
get() . 388
update() . 390

Maintenance . 390
create() . 392
delete() . 394
exists() . 395
get() . 396
update() . 397

Map . 398
create() . 399
delete() . 401
exists() . 401
get() . 402
update() . 407

4

Mediatype . 407
create() . 408
delete() . 409
get() . 410
update() . 411

Proxy . 412
get() . 413

Screen . 414
create() . 415
delete() . 417
exists() . 418
get() . 419
update() . 420

Script . 421
create() . 421
delete() . 422
execute() . 423
get() . 423
update() . 424

Template . 425
create() . 426
delete() . 427
exists() . 428
get() . 429
massAdd() . 431
massRemove() . 432
massUpdate() . 432
update() . 434

Trigger . 435
addDependencies() . 436
create() . 437
delete() . 438
deleteDependencies() . 438
exists() . 439
get() . 440
update() . 442

User . 443
addMedia() . 444
authenticate() . 445
create() . 445
delete() . 446
deleteMedia() . 447
get() . 448
login() . 449
logout() . 450
update() . 450
updateMedia() . 451
updateProfile() . 451

Usergroup . 452
create() . 453
delete() . 454
exists() . 455
get() . 456
massAdd() . 457
massRemove() . 458
massUpdate() . 458
update() . 459

Usermacro . 460
createGlobal() . 461
deleteGlobal() . 462
deleteHostMacro() . 463
get() . 463
massAdd() . 465

5

massRemove() . 466
massUpdate() . 467
updateGlobal() . 468

Example API session . 469
Getting started with Zabbix API . 471

What is Zabbix API . 471
Using JSON RPC . 471
Basic request format . 471
Authenticating . 472
Usage examples and common parameters . 473

Zabbix manpages 477
zabbix_agentd . 477

NAME . 477
SYNOPSIS . 477
DESCRIPTION . 477
FILES . 478
SEE ALSO . 478
AUTHOR . 478
Index . 478

zabbix_get . 478
NAME . 478
SYNOPSIS . 478
DESCRIPTION . 478
EXAMPLES . 479
SEE ALSO . 479
AUTHOR . 479
Index . 479

zabbix_proxy . 479
NAME . 479
SYNOPSIS . 480
DESCRIPTION . 480
FILES . 480
SEE ALSO . 480
AUTHOR . 480
Index . 480

zabbix_sender . 481
NAME . 481
SYNOPSIS . 481
DESCRIPTION . 481
EXAMPLES . 482
SEE ALSO . 482
AUTHOR . 482
Index . 482

zabbix_server . 482
NAME . 482
SYNOPSIS . 482
DESCRIPTION . 482
FILES . 483
SEE ALSO . 483
AUTHOR . 483
Index . 483

Zabbix Protocols 483
1 Zabbix Agent . 484

6

Zabbix Manual

This is Zabbix manual for version 1.8.

All content is available by exploring the individual chapters on the left.

Copyright notice

Zabbix documentation is NOT distributed under a GPL license. Use of Zabbix documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as
long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on
any media, except if you distribute the documentation in a manner similar to how Zabbix disseminates it (that is, electronically for
download on a Zabbix web site) or on a USB or similar medium, provided however that the documentation is disseminated together
with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation,
in whole or in part, in another publication, requires the prior written consent from an authorized representative of Zabbix. Zabbix
reserves any and all rights to this documentation not expressly granted above.

1 About

overview_of_zabbix goals_and_principles what_s_new installation_and_upgrade

1 Overview of Zabbix

1.1 What is Zabbix?

Zabbix was created by Alexei Vladishev, and currently is actively developed and supported by Zabbix SIA.

Zabbix is an enterprise-class open source distributed monitoring solution.

Zabbix is software that monitors numerous parameters of a network and the health and integrity of servers. Zabbix uses a flexible
notification mechanism that allows users to configure e-mail based alerts for virtually any event. This allows a fast reaction to
server problems. Zabbix offers excellent reporting and data visualisation features based on the stored data. This makes Zabbix
ideal for capacity planning.

Zabbix supports both polling and trapping. All Zabbix reports and statistics, as well as configuration parameters, are accessed
through a web-based front end. A web-based front end ensures that the status of your network and the health of your servers
can be assessed from any location. Properly configured, Zabbix can play an important role in monitoring IT infrastructure. This is
equally true for small organisations with a few servers and for large companies with a multitude of servers.

Zabbix is free of cost. Zabbix is written and distributed under the GPL General Public License version 2. It means that its source
code is freely distributed and available for the general public.

Commercial support is available and provided by Zabbix Company.

1.2 What does Zabbix offer?

Zabbix offers:

• auto-discovery of servers and network devices
• distributed monitoring with centralised WEB administration
• support for both polling and trapping mechanisms
• server software for Linux, Solaris, HP-UX, AIX, Free BSD, Open BSD, OS X
• native high performance agents (client software for Linux, Solaris, HP-UX, AIX, Free BSD, Open BSD, OS X, Tru64/OSF1,
Windows NT4.0, Windows 2000, Windows 2003, Windows XP, Windows Vista)

• agent-less monitoring
• secure user authentication
• flexible user permissions
• web-based interface
• flexible e-mail notification of predefined events
• high-level (business) view of monitored resources
• audit log

1.3 Why use Zabbix?

7

http://www.zabbix.com/support.php

• Open Source solution
• highly efficient agents for UNIX and WIN32 based platforms
• low learning curve
• high ROI. Downtimes are very expensive.
• low cost of ownership
• very simple configuration
• Centralised monitoring system. All information (configuration, performance data) is stored in relational database
• high-level service tree
• very easy setup
• support for SNMP (v1,v2). Both trapping and polling.
• visualisation capabilities
• built-in housekeeping procedure

1.4 Users of Zabbix

Many organisations of different size around the world rely on Zabbix as a primary monitoring platform.

2 Goals and Principles

2.1 Main Goals of Zabbix Development

There are several goals Zabbix is trying to achieve:

• become recognized Open Source monitoring tool
• create Zabbix user group, which helps making the software even better
• provide high-quality commercial support

2.2 Main principles of Zabbix development

• be user friendly
• keep things simple
• use as few processing resources as possible
• react fast
• document every aspect of the software

3 Installation and Upgrade Notes

3.1 Installation

See the installation_from_source section for full details.

3.2 Version compatibility

Older agents from Zabbix 1.0, Zabbix 1.1.x, Zabbix 1.4.x and Zabbix 1.6.x can be used with Zabbix 1.8. It does not require any
configuration changes on agent side.

Warning:
Older Zabbix proxies of version 1.6.x can’t be used with Zabbix 1.8, they should be upgraded.

3.3 Important notes

3.3.1 For version 1.8

• All hosts now are required to belong to at least one group.
• CPU index for system.cpu.util key on Linux now starts with 0.
• Key vfs.fs.size returns data in bytes for all operating systems now.
• Key vfs.fs.size now takes into account reserved diskspace for root user.
• Comment at the end of a configuration file line is not allowed anymore (this worked for numeric parameters only before).

3.3.2 For version 1.8.3

• Parameter service.ntp for item keys net.tcp.service and net.tcp.service.perf renamed to ntp. Old syntax is still sup-
ported.

• Trying to run IPv6-enabled daemon on a system without IPv6 support fail:

8

Listener failed with error: socket() for [[(null)]:10051] failed with error 97: Address family not supported by protocol.

3.3.3 For version 1.8.5

• The method of external command invocation for Zabbix daemons has been changed to allow terminating runaway processes.
Instead of using standard popen method as before, Zabbix now explicitly calls /bin/sh to execute desired command.

• Trying to run a Zabbix daemon, compiled on Linux kernel 2.6.27 or later on a system with kernel 2.6.26 or older will
fail:socket() for [[-]:10050] failed with error 22: Invalid argument

3.3.4 For version 1.8.6

• Zabbix daemons now refuse to start up if configuration file contains incorrect parameters. If old parameters have accumu-
lated in the configuration files, this will result in inoperable daemons after the upgrade until the parameters are fixed.

3.3.5 For version 1.8.8

• In some cases hosts and proxies with identical name might have appeared in the Zabbix database. In 1.8.8, Zabbix server
will shut down if it detects such a situation. This check was removed in 1.8.9.

3.3.6 For version 1.8.9

The shutdown upon detection of duplicate hosts, introduced in 1.8.8, has been removed.

3.3.7 For version 1.8.16

Accepted data limit of 128MB was introduced when using Zabbix protocol. Any other data (including older Zabbix protocols) stays
limited at 16MB.

3.3.8 For version 1.8.18

Zabbix server now correctly enables SSL host verification when using Ez Texting service to send alerts.

3.3.9 For version 1.8.20

If Zabbix is logging to syslog then after an upgrade to Zabbix 1.8.20 you will see changes in the application names appearing in
syslog:

Zabbix Agent → zabbix_agent
Zabbix Agent → zabbix_agentd
Zabbix Proxy → zabbix_proxy
Zabbix Server → zabbix_server
Zabbix Get → zabbix_get
Zabbix Sender → zabbix_sender

The old, incorrect names (on the left) contained a space which is not allowed by RFC 5424 for APP-NAME. If you are using regular
expressions in monitoring of syslog you may want to adjust them for the new application names.

3.4 System requirement changes

Additional or increased system requirements:

• Support for PHP 4 dropped.
• Maximal PHP memory size should be at least 128MB (option memory_limit).
• Maximal PHP POST size should be at least 16MB (option post_max_size).

Also see requirement changes for versions 1.8.2, 1.8.3 and 1.8.9.

3.5 Known problems

Warning:
Zabbix frontend in 1.8 does not work with SQLite backend. Please, use one of the other supported databases.

3.5.1 For version 1.8

• PHP mbstring check may fail with PHP < 5.2 in Zabbix 1.8. To avoid this issue, copy zabbix.conf.php.example file to
zabbix.conf.php and modify parameters, including database access parameters.

• For IPMI support you need a recent OpenIPMI version - 2.0.14 and later is known to work.
• Sorting in frontend is not performed for entities with positional variables (like item names with $1 etc).
• XML export includes SNMP and other information for all items.
• Hostnames with spaces do not work when sending data from a file with zabbix_sender (fixed in 1.8.2).
• Uploading of images for network maps may fail if database is not configured properly. Make sure database, tables and fields
are set to UTF-8 encoding.

9

• Precompiled binaries (agent, sender, get) might not work on 64bit systems with glibc versions older than 2.5. Common
symptom is failing to start with the error message: Floating point exception. Use older versions, or compile from the scratch
on the target system.

3.5.2 For version 1.8.2

Because of frontend changes, some installations might see incorrect older data appear in frontend. These include:

• Incorrect trigger appearing, with name **ERROR**, usually in Monitoring → Triggers section, when showing all hosts from
all groups. This trigger can be deleted by clicking on it, choosing Configuration of triggers, then clicking on Delete in
the trigger editing form and confirming the deletion.

Attention:
You might have to remove groupid=&hostid=& part from the URL when attempting to delete the trigger.

• Depending on the installation time of your Zabbix server, default graphs might have incorrect configuration. This only affects
you if those graphs are being used. Opening such a graph usually will swap working time and trigger showing with percentile
values. If that is the case, simply fixing and saving the graph will solve the problem.

3.6 Upgrade procedure

The following steps have to be performed for successful upgrade from Zabbix 1.6.x to 1.8. The whole upgrade procedure may take
several hours depending on size of Zabbix database.

3.6.1 Stop Zabbix server

Stop Zabbix server to make sure that no new data is inserted into database.

3.6.2 Backup existing Zabbix database

This is very important step. Make sure that you have backup of your database. It will help if upgrade procedure fails (lack of disk
space, power off, any unexpected problem).

3.6.3 Backup configuration files, PHP files and Zabbix binaries

Make a backup copy of Zabbix binaries, configuration files and PHP files.

3.6.4 Install new server binaries

You may use pre-compiled binaries or compile your own.

3.6.5 Review Server configuration parameters

Some parameters of zabbix_server.conf were changed in 1.8, new parameters added. You may want to review them.

• Configuration option StartDBSyncers has been removed from Zabbix server and proxy configuration files.

3.6.6 Upgrade database

Attention:
Database upgrade is a required step when upgrading from one major Zabbix version to another, such as from 1.6 to 1.8.
It is not required for minor upgrades, such as from 1.8.x to 1.8.x, unless specifically stated so in the release notes of the
version.

Before running upgrade scripts drop the following indexes:

MySQL

alter table dhosts drop index dhosts_1;
alter table dservices drop index dservices_1;
alter table httptest drop index httptest_2;
alter table httptest drop index httptest_3;
alter table history_log drop index history_log_2;
alter table history_text drop index history_text_2;
alter table actions drop index actions_1;
alter table escalations drop index escalations_2;
alter table graphs_items drop index graphs_items_1;
alter table graphs_items drop index graphs_items_2;
alter table services drop index services_1;

Oracle or PostgreSQL

10

drop index dhosts_1;
drop index dservices_1;
drop index httptest_2;
drop index httptest_3;
drop index history_log_2;
drop index history_text_2;
drop index actions_1;
drop index escalations_2;
drop index graphs_items_1;
drop index graphs_items_2;
drop index services_1;

Ignore any warning messages about non-existent indexes!

Database upgrade scripts are located in directory upgrades/dbpatches/1.8/<db engine>:

• MySQL: upgrades/dbpatches/1.8/mysql/patch.sql
• Oracle: upgrades/dbpatches/1.8/oracle/patch.sql
• PostgreSQL: upgrades/dbpatches/1.8/postgresql/patch.sql

Database upgrade should take around 10-15 minutes, for PostgreSQL it may take several hours or more because of conversion of
existing historical data. It is recommended to test the upgrade procedure in a non-production environment.

Attention:
If you are converting the database to UTF-8, it can take many hours.

Make sure that you have enough permissions (create table, drop table, create index, drop index). Also make sure that you have
enough free disk space.

These scripts are for upgrade from Zabbix 1.6.x to 1.8 only! For upgrade from earlier versions use also upgrade scripts from Zabbix
1.6.x.

3.6.7 Install new Zabbix GUI

Follow installation instructions.

3.6.8 Start new Zabbix binaries

Start new binaries. Check log files to see if the binaries have started successfully.

4. What’s new in Zabbix 1.8

More than a year in making, Zabbix 1.8 has arrived with lots of new features, as well as improved old ones. You can introduce
yourself to the changes for this new version of Zabbix in the following section.

1 Notable improvements With so many changes it is impossible to pick 3 most notable ones - which is attempted below. For
this reason, it is suggested to read on, as some generally minor feature might be very important to you.

• Performance improvements
• Full Unicode support
• Bar reports
• API technical preview

2 New features and improvements for the frontend Zabbix web frontend is the feature that sets it apart from other solutions.
Powerful, yet easy to use official GUI is shipped with the default package. It provides both non-intimidating access for novice users
and large scale configuration features for sizable installations.

Being most user-visible part, we will start by looking at many new features and improvements in Zabbix 1.8 for the web frontend.

2.1 Bar reports Zabbix already has easy to use simple graphs that do not require any configuration - these are provided for
every numeric item. Custom graphs, along with a couple simplistic reports, allow to look at the data in context. Zabbix 1.8 brings
much more powerful built-in reporting.

New report category, bar reports, allows to look at the data from many different angles. Want to look at the weekly temperatures
in the server room for the last two months? Have to compare webserver load for the first month of every quarter this year? All
that and more is possible with this new feature.

11

2.2 Full Unicode support While previous Zabbix versions were multi-language friendly, providing several frontend translations,
it was not a truly global thing - the most popular encoding, Unicode, was not fully supported.

Zabbix 1.8 now fully supports Unicode/UTF-8, allowing for a true localised or multilanguage setup.

2.3 Improved time period navigation In Zabbix, single control is used to select time period displayed for many views, including
simple and custom graphs, raw data, screens and webmonitoring. Already improved in 1.6, time period selector has been improved
in 1.8 further.

This scrollbar allows easy dragging and resizing of it. Additionally, links on the left hand side allow to choose some predefined,
often used time periods and move displayed period forward/backward in time. And the dates on the right hand side actually work
as links, popping up a calendar and allowing to set specific start/end time.

Notice the dynamic/fixed link in the lower right hand corner? It can be used to control whether time period is kept constant when
you change start/end time.

In addition to the screenshots you can also view the video of using graph time period controls.

2.4 Improved graphs Zabbix graphs have been improved in many ways. This includes both visual and functional improvements,
like the time period selector alreadymentioned. For example, information about max/min/avg values is presented clearly as a table.

12

http://blip.tv/file/2950510

2.4.1 Improved timeline in charts

Zabbix graphs - or charts - usually display time on x axis. And even this representation has been improved in the new version.

Comparing 1.6 and 1.8:

|<| |<| |-|

|<| |<| |-|

As can be seen, labels are now easier to read. Instead of prioritising some arbitrary point in time, depending on graph scale, actual
points in time like change of a day are prioritised. Sometimes Zabbix will even use more ”human readable” labels:

2.4.2 Gradient line support in graphs

Zabbix graphs support several line styles, and 1.8 brings one more - gradient line. It’s easier to understand how that works by
looking at an actual example.

13

2.4.3 DejaVu font used for graphs

DejaVu font is now used for graphs for nice looking text - and for Unicode capabilities.

2.5 Improved map editing Zabbix supports network maps where monitored environment can be laid out on a background
image to provide user friendly overview.

In previous versions, editing such network maps was not easy - coordinates of each element on the map had to be specified
manually.

Map editing in Zabbix 1.8 has been greatly improved by adding drag and drop support, as well as selected element detail displaying
in a popup.

You can even watch a video of map editing.

In addition to that map links may have optional text for displaying arbitrary information, for example, bandwidth data.

Background map CC-BY-SA Openstreetmap.

2.6 Changed configuration layout Zabbix web frontend provides convenient way to display and visualise received data, as
well as configure all aspects of monitoring.

Layout of this configuration has been redone in 1.8. Instead of separate sections for items, graphs, triggers and so on, they are
folded into host configuration section, where convenient linking allows for easy access to all of these entities and more.

On the other hand, host group configuration has been brought out on the configuration menu.

14

http://dejavu-fonts.org
http://blip.tv/file/2942525
http://www.openstreetmap.org/

Another change is general configuration being moved to administration section to avoid Zabbix administrator level users from
having access to global configuration parameters.

2.7 Visual trigger editing frontend Usage thresholds and any other problem conditions are freely configurable by user. These
definitions are called triggers, and complex expressions can be used for each trigger to define what is considered a problem.

In addition to ability to edit trigger expressions directly, a frontend to create triggers visually has been added.

There is a special mode for creating log related triggers.

It also incorporates ability to provide test data and try out trigger behaviour.

(screenshot)

2.8 New and improved filters As Zabbix frontend provides means to access all the information, it can be a daunting task to
find the desired one. Previous versions offered ways to filter this information, and 1.8 improves situation in this regard by adding
new filters and making existing ones more powerful.

2.8.1 Items filter

Item configuration section is the one where all aspects regarding data gathering are configured, thus it is displaying quite a lot of
information. Being able to quickly find desired data gathering entries is crucial to efficient configuration, and in Zabbix 1.8 there’s
an improved filter for items that allows for much more detailed searching.

(screenshot)

After performing initial filtering, subfilter becomes available. It presents found values and results can be filtered further.

2.8.2 Audit filter

Accountability is important on any system with more than one user (and on many systems with single user as well). Zabbix frontend
records all operations in an audit log.

In version 1.8 audit logs now can be filtered quite extensively to find exactly the changes you are looking for.

15

2.8.3 Latest data filter

Looking at shiny graphs is tempting, but sometimes you need the real data. Latest data section in Zabbix frontend allows to see
exact values for all monitored metrics.

It is now possible to filter this screen by freeform search against item descriptions.

2.8.4 Reworked ”Status of triggers” view

Trigger view is widely used to display list of current problems, and it was possible to display recent events for all the problems,
limited by day count.

In 1.8, this screen gained has been changed, providing new features like expanding individual triggers to show their events and
confirming all events for a trigger.

2.8.5 Other filters improved

Filters in other sections of the frontend have been improved as well, allowing to get to the data easier and more quickly.

2.9 Improved screen editing Zabbix screens is a feature that allows to group many frontend elements, including graphs,
network maps, raw data and many others. Configuring them initially was not very hard, but making any significant changes was
nearly impossible in some cases.

Screen editing has been greatly improved in 1.8. This includes:

• Drag and drop support. Dragging an element to empty cell will move it there, dragging an element on occupied cell will
switch these elements. You can watch a video of this feature (site also allows to download original .ogg video).

• Using icons on the screen edges, rows now can be inserted and removed from arbitrary locations.

2.10 Global search There’s now a search box in the upper right corner, which allows searching in hosts, host groups and
templates.

Results allow for a quick access to found entities and their elements:

16

http://blip.tv/file/2941499

2.11 Minor frontend improvements For a GUI minor visual change can bring large benefits to the user. Zabbix 1.8 has many
minor improvements and features that should make working more productive and pleasant.

2.11.1 Cleaner error displaying

Error messages are now shown as icons and error text is available in a popup. Clicking the icon opens the popup to allow copying
of the message.

2.11.2 History strings saved by reference

At the top of the frontend, there’s a breadcrumbs type history, showing recently accessed pages.

When a language is switched in frontend, in previous versions existing history entries would not switch language, only new entries
would be added in the correct language. Now history strings change appropriately.

2.11.3 Paging for entity lists added

Many locations of Zabbix frontend present information as lists - whether it’s a list of hosts, items or triggers. These lists can get
quite long on large installations of Zabbix, and that slows down frontend considerably.

Zabbix 1.8 supports splitting long lists in multiple pages. Entry count per page is configurable in user’s profile.

|<| |<| |-|

|<| |<| |-|

2.11.4 Selected rows are highlighted now

Most of the entries in these lists can be selected for performing some operation on them.

A minor but welcome improvement in 1.8 - selected rows now are hilighted.

2.11.5 Ability to display server name

Setting variable ZBX_SERVER_NAME allows Zabbix server name to be displayed in the frontend upper right corner.

It is also used in page title.

2.11.6 More flexible linked items

Zabbix supports very powerful templating that makes large scale configuration management easy. Templates can be linked to
monitored hosts and they determine what and how is monitored.

17

Downstream linked items in Zabbix 1.8 are more flexible now - for example, it is possible to edit SNMP parameters like community
string, or allowed hosts for trapper items, in items that are linked in from templates.

2.11.7 IP address becomes default option

In host creation form, IP address is now the default choice.

2.11.8 Debug mode added for frontend

Mostly useful for developers, but can be handy when trying to determine source of a problem for others as well.

Debug mode can be enabled on user group basis.

2.11.9 Help icons lead to online manual

Oldtime Zabbix users might remember the days when help icons from Zabbix frontend linked to the online manual. With the
conversion to online documentation that again is possible, and in Zabbix 1.8 most of these icons open Zabbix manual in a new
browser window or tab.

3 API In version 1.8 first, Zabbix provides JSON-RPC API. It already allows to perform most of the configuration changes, thus
enabling powerful means for automated or complex setup management.

While API itself might not be that exciting for casual users, it enables creation of various tools. One such tool already has been
created - Zabbix commandline utility or Zabcon.

Zabcon is especially exciting for users who would like to perform uncommon, large scale changes, as it allows easy scripting without
programming skills.

Zabbixmanagement from servers without GUI installed also is expected to be possible, and surely users will come upwith innovative
and impressing uses for this tool.

Attention:
Note: API is currently considered to be in a technical preview state and can change in next versions.

4 Improvements for larger installations Zabbix is being used in larger and larger environments every day. 1.8 release
introduces several changes that are specifically useful in average and above setups.

4.1 Performance improvements Whenmonitoring hundreds and thousands of devices, load on themonitoring server hardware
can become a serious issue. Zabbix 1.8 brings many different improvements to the performance in several key areas.

4.1.1 Increased Zabbix server and proxy performance

Doing the main work behind the scenes, Zabbix server has been improved greatly to allow gathering more data on the same
hardware. As Zabbix proxy shares some code with the server, it has benefited from these changes as well.

4.1.1.1 Much more efficient polling

Hundreds of pollers can be executed for greater parallelism and performance. The pollers do not communicate directly with the
database and use very little of server CPU and memory resources.

4.1.1.2 Added configuration data cache module

18

http://json-rpc.org/
http://www.zabbix.com/wiki/doc/zabcon

Database cache is enabled by default and can not be disabled. Configuration option StartDBSyncers has been removed from
Zabbix server and proxy configuration files.

A special internal check has been introduced, zabbix[wcache,*] to monitor health of this cache.

4.1.2 Frontend images recompressed with pngcrush

To reduce amount of data that users have to retrieve from webserver when using Zabbix frontend, all PNG images have been
recompressed for optimal size.

4.1.3 Items with SNMP dynamic index use one connection

Zabbix supports monitoring SNMP metrics that have dynamic identifiers.

In version 1.8 index resolving and data retrieval is performed in a single connection now, reducing network load and load on the
monitored devices.

4.2 Automated host management improvements For larger or constantly changing environments replicating these changes
in Zabbix configuration can be a challenge. Zabbix already supported network discovery, and 1.8 now brings both improvements
to the network discovery, as well as new methods to automate adding of new devices to monitor.

4.2.1 Network discovery improvements

Network discovery, available in previous versions, has received multiple improvements.

4.2.1.1 Port interval support

For services where it’s appropriate, port interval support has been added.

4.2.1.2 New action operations

Based on discovery events, two new operations have been added, thus increasing available operation count for network discovery
to 10.

• Enable host
• Disable host

4.2.1.3 IP mask support

Industry standard network mask notation can now be used in network discovery, for example, 192.168.1.0/24.

4.2.1.4 Support for multihomed devices

If a host provides some service on multiple IP addresses, it would be discovered as multiple hosts in Zabbix versions before 1.8.
Starting with 1.8, it is possible to use different uniqueness criteria for some services, for example system.uname returned by
Zabbix agent or any OID returned by SNMP capable host.

4.2.1.5 SNMPv3 support

Network discovery in Zabbix 1.8 supports SNMPv3 with all the corresponding functionality.

4.2.2 Auto registration for active agents

Completely new in Zabbix 1.8, it is possible to allow active Zabbix agent auto-registration, after which server can start monitoring
them. This allows to add new hosts for monitoring without any manual server configuration for each individual host.

19

http://www.zabbix.com/documentation/1.8/manual/auto-discovery

The feature might be very handy for automatic monitoring of new Cloud nodes. As soon as you have a new node in the Cloud
Zabbix will automatically start collection of performance and availability data of the host.

4.3 Support for global, template and host level macros Support for user definable macros (or variables) has been added.
These can be defined globally for Zabbix installation, on template and host level. For example, defining the following macros on a
host level allows to set custom thresholds per host, even if all hosts are linked against single template:

In this case, templated trigger expression would be:

{ca_001:system.cpu.load[,avg1].min({$CPULOAD_PERIOD})}>{$MAX_CPULOAD}

5 Various

5.1 Host maintenance Host and host group maintenance has been added to Zabbix.

Hosts that are in maintenance are indicated as such in Monitoring → Triggers view.

If a problem happens during the maintenance and is not resolved, notification is generated after maintenance period ends.

If a log item is added while host is in maintenance and maintenance ends, only new logfile entries since the end of the maintenance
will be gathered.

5.2 Improved audit log Zabbix provides accontability by recording all user logins and changes to the Zabbix configuration in
the audit log.

Audit log in 1.8 has been improved, and instead of simply seeing that something has changed, many entities will have exact
changes recorded.

|<| |<| |-|

|<| |<| |-|

5.3 New macros Zabbix provides very useful variables - called macros - to be used in item names, notifications and elsewhere.
Zabbix 1.8 increases the amount of available macros, as well as making some macros usable in more locations.

5.3.1 In notifications

Along with existing macros new ones can be used in notifications that are sent out.

• {NODE.*[1..9]}
• {ITEM.LOG.*[1..9]}
• {ITEM.VALUE} and {ITEM.VALUE[1..9]}
• {ITEM.LASTVALUE[1..9]}
• {HOST.CONN[1..9]} {HOST.DNS[1..9]} {IPADDRESS[1..9]}
• {TRIGGER.KEY[1..9]}
• {HOSTNAME[1..9]}
• {ITEM.NAME[1..9]}
• {PROFILE.*[1..9]}
• {EVENT.ACK.STATUS}
• {EVENT.ACK.HISTORY}
• {TRIGGER.EVENTS.UNACK}

5.3.2 In map labels

Map labels allow using handy macros like the current value of some item.

• {TRIGGERS.UNACK}

20

http://www.zabbix.com/documentation/1.8/manual/config/macros#global_and_host_level_macros

5.4 Advanced regular expression editor Advanced regular expression editor was added to Zabbix with ability to test regular
expressions. It is now possible to define complex regular expression with easy to use interface and reuse them with simple
reference.

5.5 IPv6 support for SNMP monitoring In addition to the SNMP related improvements for network discovery, IPv6 support has
been implemented for SNMP monitoring.

5.6 Supported PHP version changes Zabbix frontend is based on PHP. Since the last stable Zabbix release there have been
major changes in PHP versions, and Zabbix frontend has been changed accordingly.

5.6.1 Support for PHP 5.3 added

Released in 2009.06.30, PHP 5.3.0 was out for some time to require support of Zabbix frontend.

5.6.2 Support for PHP 4 dropped

Last bugfix release in 2008.01.03 and last release with security fixes in 2008.08.07, PHP4 was not receiving bugfixes anymore.

Zabbix 1.8 requires PHP 5.0 or later.

6 Minor improvements We call these minor, but for somebody one of these might be the biggest change in Zabbix 1.8.

6.1 Basic authentication support in web monitoring Web monitoring now supports basic HTTP authentication. It can be
configured per scenario.

6.2 New and improved monitored metrics While Zabbix can be extended, built-in checks require less resources and are
easier to use. Zabbix 1.8 introduces several new checks and improves old ones.

6.2.1 New items

Several completely new items have appeared.

• icmppingloss
• net.tcp.dns.query

6.2.1.1 CPU switches support on Linux

Key system.cpu.switches can be used for Linux hosts.

6.2.1.2 Added Windows services key

Added services key for Windows which can return services in a particular state.

6.2.2 ICMP items have new parameters

Zabbix ICMP items now are much more flexible. Item icmpping has gained the following parameters:

• target - host IP or DNS name;
• count - number of packets;
• interval - time between successive packets in milliseconds;
• size - packet size in bytes;
• timeout - timeout in milliseconds.

Now it is possible to use a key like this:

icmpping[10.10.10.10,5,300,128,100]

This would send five 128 byte packets to host with IP 10.10.10.10 with 300 ms interval between them, and use 100 ms timeout.

Item icmppingsec has gained all the above parameters, and one additional:

• mode - one of min, max, avg.

Default mode is avg.

6.2.3 ’maxlines’ parameter for log items

Item keys log and eventlog now have new parameter - maxlines. It specifies maximum number of new lines per second the
agent will send to Zabbix server or Proxy.

By default, Zabbix agent does not send more than 100 log lines per second per log file. For fast growing file the number can be
increased using the new parameter.

6.2.4 New Windows eventlog filters

21

http://php.net

Windows eventlog entries now can be filtered by type, source and event ID on the agent side.

6.2.5 SSH and telnet checks

Now SSH and telnet can be used for direct, agent-less monitoring. SSH supports both password and key authentication methods.

It makes possible very effective remote monitoring of network devices, appliances and servers without use of Zabbix Agent.

Currently SSH and telnet cannot be used in actions, this functionality will be available in future releases.

6.2.6 LVM swap devices support

LVM devices are now supported as swap devices on Linux.

6.2.7 First CPU number changed on Linux

First CPU on Linux is now referred to as 0, which is consistent with other operating systems.

6.2.8 Positive sign for decimal values supported

If incoming decimal (float) value is preceded by a + sign, it is supported as a positive number now.

6.3 New input data types While different base values could be monitored before with user parameters, that was not easy
enough. Zabbix 1.8 natively supports two new input data types, sometimes found on devices like printers.

• Octal
• Hexadecimal

6.4 Client utilities moved to bin Zabbix client utilities zabbix_get and zabbix_sender were moved from sbin to bin.

6.5 Improved sample configuration files Sample configuration file layout was changed. Now all parameters are included,
and their default values, as well as allowed ranges, are documented.

6.6 Added manpages Manpages for all Zabbix processes have been added.

6.7 Notification media can be chosen in action operations It means that it’s possible to define messages that will be sent
to one or several media only. For example, all critical messages can be delivered by using SMS messaging, while other messages
using both email and SMS without creating multiple actions.

6.8 Timestamp support for zabbix_sender Support for -T parameter in zabbix_sender has been added, which allows to set
timestamp for each value. The option can be used to migrate older historical data from other monitoring tools to Zabbix database
for graphing and long-term analysis.

22

6.9 Manual user unblocking Ability to manually unblock users who have been locked out by bruteforce protection was added.

Clicking on the Blocked link will unblock this user.

6.10 Native support of Oracle Previous version of Zabbix had a dependency on a third party library called sqlora8. The library
is not actively developed any more. Oracle support is now implemented using native Oracle Call Interface, which greatly improves
performance and stability of Zabbix setups using Oracle as a back-end database.

6.11 Host status propagation from proxies If a host is monitored by a proxy, status of the host will be correctly displayed
and updated in Zabbix front-end.

6.12 Rotated logfile monitoring Zabbix supports logfile monitoring, and version 1.8 improves it further. If an application is
writing to a new logfile with varying name - for example, if logfile name includes date - it is much easier to monitor with Zabbix
1.8, as it is now possible to specify regular expressions in logfile monitoring.

6.13 Online documentation Documentation from an inflexible PDF file has been converted to online format where anybody
can comment on individual pages. Offline documentation can still be obtained with ODT export functionality.

6.14 Detailed availability information displaying Instead of simply displaying generic host status, in 1.8 frontend three
different monitoring methods have their status displayed - Zabbix agent, SNMP and IPMI.

Errors related to each method are stored separately and can be obtained by moving mouse cursor over the error icon.

Note:
Default theme uses green to denote availability, while Black&blue theme uses blue colour.

What’s new in further releases See detailed information on new features and significant changes in other 1.8 series releases:

• 1.8.1
• 1.8.2
• 1.8.3
• 1.8.4
• 1.8.5
• 1.8.6

Installation and upgrade See the installation section for new installations.

See upgrading section if upgrading from an older Zabbix release.

Before upgrading, read important notes.

5 What’s new in Zabbix 1.8.1

5.1 Calculated items Zabbix 1.8.1 adds support for a new item type - calculated items. These allow to reuse data from other
items, making all kinds of calculations in the process.

5.2 New and changed items

• added support of system.stat[] under AIX;
• added support of net.if.* under Windows;
• added support of net.if.list on Windows;
• added support of kernel.maxproc[] under Linux 2.6;
• added possibility to exclude some services from the result of Windows key services[].

23

http://en.wikipedia.org/wiki/Oracle_Call_Interface
http://en.wikipedia.org/wiki/OpenDocument

5.3 Frontend improvements 5.3.1 Single problem handling in maps

There’s now an option for each map, controlling single problem displaying. If it is marked, previous behaviour is used - single
problem has trigger name displayed. If it is disabled, single problem is listed as ”1 Problem”

And this is the effect it has on maps:

Expanding of the problem enabled Expanding of the problem disabled

5.3.2 Read-only hosts better represented

Hosts that user does not have write permissions to (but has read permissions) are disabled in hostgroup properties and can not be
operated by the user. Previously these hosts were not visible at all.

5.3.3 Host status widget in dashboard

A new widget has been added to dashboard - host status. It shows host groups and how many hosts in each group have at least
one problem. For those that have, field is coloured according to the trigger with highest severity.

24

5.3.4 Changes to Zabbix status reporting

As of version 1.8.1, ”Status of Zabbix” dashboard widget and report is only available to users of Zabbix Superadmin type. Addi-
tionally, this report/widget shows any PHP installation or configuration problems found.

5.3.5 Item colouring in trigger editing

Trigger editing now colours items according to their status - green for enabled, red for disabled and grey for unsupported. This
simple change should make identifying any problems with triggers much easier.

5.3.6 Unacknowledged event filter

New filter option added for Monitoring → Triggers view - ”Show triggers with unacknowledged events”. This option hides triggers
that have all their events acknowledged.

5.3.7 Updated translations

Translations for the following languages have been updated:

• Russian;
• Japanese;
• French.

5.4 Other changes

• Database index fixed, improving node synchronisation a lot. See release notes for upgrade instruction. Fixed index is used
by default in new installations.

• API version changed to 1.1.

6 What’s new in Zabbix 1.8.2

25

http://www.zabbix.com/rn1.8.1.php

6.1 Frontend changes 6.1.1 Dashboard filtering

Zabbix dashboard now can be filtered. Positioned at the upper right corner, just next to the fullscreen button, is the configuration

button - .

After pressing this button, filter configuration is revealed. By default filtering is disabled and none of the options is available.

Note:
Filter can be customised per user account.

Clicking the Disabled control will enable the filter and allow to configure it. There are three available filtering categories.

6.1.1.1 Host group filter

This filter allows to choose which groups should be shown on the dashboard. By default, all host groups are shown. Choosing
Selected in the dropdown allows to choose individual hostgroups to show.

This filtering affects System status, Host status, Last 20 issues andWeb monitoring widgets.

26

Attention:
If host group filter is enabled, but no groups are selected, no data will be shown in the affected dashboard widgets.

6.1.1.2 Maintenance filter

By default, all data for hosts that are in a maintenance is shown on the dashboard. Unchecking Show hosts in maintenance option
will hide this information.

This filtering affects System status, Host status, Last 20 issues andWeb monitoring widgets.

6.1.1.3 Trigger severity filter

Additionally, it is possible to filter shown data based on trigger severity.

This filtering affects System status, Host status and Last 20 issues widgets. For System status widget, corresponding
columns are hidden.

6.1.1.4 Filter indication

Clicking Save will return to the dashboard. To indicate an enabled filter, configuration button is highlighted - .

Additionally, depending on filter state, button tooltip explains what it is indicating.

Dashboard filter disabled Dashboard filter enabled

6.1.2 Time period selector changes

Starting with 1.8.2, there are two changes:

6.1.2.1 Time period selector moved to the top

Now time period scrollbar is part of the filter at the top of the page. In addition to being on top for all pages, it can be hidden by
collapsing the filter.

27

Expanded period scrollbar Collapsed period scrollbar

6.1.2.2 Improved events and auditlog time period selection

Instead of providing very limited ”Since” time filter, both event view and audit/action log now use the same standard time period
scrollbar.

Period selector in events Period selector in audit

6.1.3 Map and screen exporting and importing

6.1.3.1 Map exporting and importing

Support for network map exporting and importing was added. Maps can now be exported from their configuration screen:

And on the same screen the import button can be found:

When importing, it is possible to choose whether overwrite existing maps and add new ones:

28

6.1.3.2 Screen exporting and importing

Support for screen exporting and importing was added. Screens can now be exported from their configuration screen:

And on the same screen the import button can be found:

When importing, it is possible to choose whether overwrite existing maps and add new ones:

6.1.4 More configurability for ”Status of triggers” screen element

Screen element ”Status of triggers” now is split in two new elements:

• Status of host triggers;
• Status of hostgroup triggers.

They allow to choose a host or host group to filter element contents on, respectively. If any is chosen, there are no host and
hostgroup dropdowns. If none is chosen, element works as before - interactive hostgroup and host dropdowns allow to choose
filter options in the fly.

6.1.5 Translation updates

The following new translations have been added:

• Ukrainian.

The following translations have been updated:

• Brazilian Portuguese;
• French;
• Russian.

6.1.6 Frontend requirement changes

• PHP parameter max_input_time is now required to be at least 300;

29

• PHP parameter upload_max_filesize must be at least 2MB;
• Parameter mbstring.func_overload not required anymore.

6.1.7 Miscellaneous frontend changes

• Host maintenance is now displayed in dashboard by colouring host name:

• When viewing host list in configuration, one more level of linked templates is now displayed in addition to the directly linked
templates. For each directly linked template, a list in parenthesis shows templates that template is linked to itself.

• Frontend now always uses PHP timezone. It will not use browser time anymore. This should solve issues with mangled time,
graphs working erroneously if browser timezone differs from PHP timezone and other issues.

• Added an ability to replace already linked templates when performing host mass update.

• API version increased to 1.2.

6.2 Improved triggers In Zabbix 1.8.2, some trigger functions and expressions have gained new features.

6.2.1 Time-shifting in triggers

Trigger functionsmin,max, avg, last and count now support additional parameter - time_shift. This parameter allows to match
data from a specific period of time in past.

For example, avg(3600,86400) will return the average value for an hour one day ago. This way it is possible to compare average
load today with average load of the same time yesterday:

{host:system.cpu.load.avg(3600)}/{host:system.cpu.load.avg(3600,86400)}>2

This expression would fire if average load for the last hour today exceeds average load of the same hour yesterday more than two
times.

6.2.2 Additional suffixes in trigger expressions

Support for new suffixes has been added. New numeric suffixes:

• T - tera;

New time-related suffixes:

• s - seconds; when used, works the same as raw value;
• m - minutes;
• h - hours;
• d - days
• w - weeks.

These improvements allow to write expressions that are easier to understand and maintain, for example the following expressions:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>120
{host:system.uptime[].last()}<86400

could be changed to:

30

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>2m
{host:system.uptime.last()}<1d

6.3 Improved items

• Telnet items now additionally support % as prompt termination character;
• Aggregate items now support:

– Comma delimited list of host groups;
– Item keys with doublequotes.

• Item key parameters now support arrays.

6.4 Other changes

• In previous versions, Zabbix server was able to reconnect to MySQL database if it temporarily became unavailable. With
1.8.2, this is also supported for PostgreSQL, Oracle and SQLite.

• Zabbix administrators now can only choose groups they are members of and users of those groups in action operations.
Additionally, they do not have access to actions that have users or groups in their operations that administrator does not
share a group with, or is not a member of, respectively.

6.4.1 New configuration parameters

• Zabbix server and proxy daemons now have new option - LogSlowQueries. Mostly helpful with performance debugging.
• Zabbix agent daemon has a new configuration parameter -UnsafeUserParameters. This allows to override security checks
and pass all characters in user parameter arguments.

• Zabbix server daemon has a new configuration paramater - MaxHousekeeperDelete. Previously, housekeeper always
removed 500 entries in one go. This amount can be customised now. If set to 0, no limit is applied.

6.4.2 Performance improvements

• Node synchronisation received further performance improvements;
• Various frontend sections use less memory and perform better.

6.4.3 More robust escalation module

Since version 1.8.2 any old escalations are removed for a particular trigger when adding new one. This should prevent multiple
recovery messages (as they also use escalation module), neverending escalations because of misconfiguration and other problems.

6.4.4 Improved zabbix_sender

Zabbix sender has gained ability to get its input from standard input when specifying - as the input file. Additionally, -r flag makes
it send new values as soon as they arrive, thus allowing to follow a file that gets information appended, or open a pipe and transmit
its data as soon as it arrives.

7 What’s new in Zabbix 1.8.3

7.1 Frontend changes 7.1.1 Global notifications

Previously, working in some other location than Status of triggers or Dashboard pages would not show any information regarding
issues that are currently happening. Starting with 1.8.3, support for global frontend notifications is added. Global notifications
involve both showing a message and playing a sound.

Global notifications can be enabled per user in profile configuration. If enabled, global message timeout can be changed. By
default, messages will stay on screen for 90 seconds.

31

Additionally, it is possible to configure details of sound notifications. There are three possible options for playing a sound:

• Once - sound is played once and fully;
• 10 seconds - sound is repeated for 10 seconds;
• Message timeout - sound is repeated while the message is visible.

It is possible to receive messages for problems and for resolutions. Messages can be filtered based on trigger severity as well. For
each trigger severity and recovery message sound to be played can be customised.

As the messages arrive, they are displayed in a floating section on the right hand side. This section can be repositioned vertically.

For this section, several controls are available:

• Move button allows to reposition the section vertically. This can also be done by dragging section header;

• Snooze button silences currently active alarm sound;

• Mute/Unmute button switches between playing and not playing the alarm sounds;

• Clear button removes all currently visible messages.

7.1.2 New frontend theme

A new frontend theme has been added - Dark orange.

32

7.1.3 Network map improvements

7.1.3.1 Change marking in maps

A new per-map option has been introduced - ability to mark map elements that have their state changed recently.

When this option is enabled, any map elements that recently had state changed (trigger firing or resolving) are marked by red
triangles.

These triangles are placed on top, bottom, left and right of an object. If the object has a label, no triangle is displayed at the label
location.

The period of showing these marks is the same as for trigger state flashing - 30 minutes.

7.1.3.2 Icon aligning in maps

In previous 1.8 branch versions of Zabbix it was not easy enough to place icons in exact locations and align them nicely - with the
gain of drag and drop ability to enter element position manually was lost. Now this ability is restored.

1.8.2 and before 1.8.3

An even bigger improvement - map icon aligning was added.

33

By default, grid for aligning is 50x50. Available grids:

• 20x20
• 40x40
• 50x50
• 75x75
• 100x100

If aligning is on, moving an icon will align it at the center of the grid cell. Clicking button Align icons will align all icons to the nearest
grid cell. It is now also possible to hide grid while editing the map.

7.1.3.3 Improved link status indicator editing in maps

It is now easier to edit status indicators for map links - line style and colour can be changed directly from the list:

Additionally, it is now possible to add multiple indicators with same line style and colour in one go:

34

For the previous form, multiple triggers can be selected with checkboxes in the trigger list.

7.1.3.4 Image import and export

Available as a part of network map export and import, image export and import has been implemented. In the map import dialogue,
there are checkboxes for icon or map background importing. This option is only available to Zabbix Super Administrators.

7.1.3.5 Map element highlighting changes

• Map element highlighting has been changed. Disabled elements in 1.8.3 have light grey background instead of dark red,
and maintenance status background is slightly lighter.

1.8.2 and before 1.8.3

35

Disabled

In maintenance

• Now map element ”map” has same icon highlighting as the map element ”host group”.

7.1.3.6 Other map improvements

• If multiple triggers with the same severity are assigned to the same map link, the one with the lowest ID takes precedence.

7.1.4 Unacknowledged trigger displaying in the dashboard

It is now possible to customise dashboard display depending on trigger acknowledgement state.

In the dashboard filter options, there is a new dropdown available, Problem display.

It provides 3 options:

• All - the default setting, which works just like before - displays all problems without any difference between acknowledged
and unacknowledged ones.

• Separated - shows unacknowledged and all problems separately in the format<Unacknowledged> of <All>. Unacknowl-
edged problems are displayed in bold, red font.

• Unacknowledged only - shows unacknowledged problems only. In this case they are also displayed in bold, red font to
clarify that this option is being used.

The difference between these 3 options can be seen here:

36

All Separated Unacknowledged
only

When in the Separated mode, tooltip for each number shows the corresponding issues - either the unacknowledged ones, or all of
them.

7.1.5 Reworked configuration section

Configuration section in 1.8.3 has been changed to improve usability.

• Template access has been brought out in the menu, as it was not that easy to find for new users. Additionally, last selected
group is remembered separately for templates and for hosts now.

• Slideshow access has been brought out in the menu as a Slides entry.

• Because of template availability from the main menu it was possible to remove dropdown in Configuration → Hosts section.
Host elements like items, triggers etc can be accessed from host configuration section, and template section provides same
access for templates.

• Configuration → Export/import section was removed, instead moving import and export controls in corresponding host and
template pages in the same way as for network maps and screens. Export can be accessed by marking templates or hosts
and choosing an action at the bottom of the list, and for import a button has been added at the top of the page.

7.1.6 More visibility for the trigger line

Trigger line in Zabbix graphs was extremely hard to spot in latest Zabbix versions. In 1.8.3, the line has been changed from 1 pixel
height to 2 pixels. It also adds two additional changes:

• a 3 pixel long dashed black line is drawn on top of the trigger line;
• trigger line itself is coloured, according to the trigger severity (so it’s light yellow for Warning severity and heavy red for
Disaster).

These changes should change the trigger line from nearly invisible to very clearly visible - let’s compare the 1.8.2 version and 1.8.3
one. In 1.8.2 trigger line is invisible unless the observer knows it’s there.

37

Trigger line in 1.8.2 Trigger line in 1.8.3

7.1.7 Improved log viewing filter

Log viewing filter was brought in line with other filters in regard to being hideable. It was also redesigned, especially to make
handling of multiple logfiles easier.

Log filter in 1.8.2 and before Log filter in 1.8.3

Additionally, this filter is also available now for text items, not for log items only.

7.1.8 Search improvements

Zabbix 1.8.3 has received two improvements to the global search functionality.

7.1.8.1 Search suggestions

Global search now provides suggestions, based on the entered string. This string is matched against hosts only and all suggestions
are lowercase independent on the actual case of the hostname.

38

7.1.8.2 Improved search results

Search results form has been greatly improved.

• Instead of showing many ”Go” links, all links now list the actual target. That makes using them much easier.
• Instead of using a dropdown and ”Go” button, editing options for hosts now are shown in a table form, requiring less clicks
to achieve the desired result.

• Count for all elements in host and template result boxes is shown.
• Links to application configuration have been added.
• Host and template names can be clicked now to access host or template properties directly.
• Disabled hosts are shown in red to provide more information.

While the new search results form is wider, it should be much more functional now:

In this screenshot, user has write access only to host First Linux Server, so editing options for other hosts are not available.

7.1.9 Unit blacklist created for items

By default, specifying a unit for an item results in the multiplier prefix being added - for example, value ’2048’ with unit B would
be displayed as 2KB. For a pre-defined, hard-coded list of units this is now prevented:

• %
• ms
• rpm

7.1.10 Support for more units

Support for the following units has been added for graph y axis:

• milli (m);
• micro (µ);
• nano (n).

39

Attention:
Note that smallest available units might limited by available database field precision.

7.1.11 Ability to choose ’All’ as a period

It is now possible to choose All as a period in graphs and elsewhere.

Note:
Maximal period currently is limited to two years.

7.1.12 Preview button in graph configuration

Previously, changing any parameter in the graph configuration would regenerate the graph. Now it only happens when really
necessary, and button Preview has been added to force regenerating.

40

7.1.13 Supported macro changes

Macro {TRIGGER.EVENTS.UNACK} now is supported in map element labels. Additionally, these macros now expand to the
following values:

Macro Value

{TRIGGER.EVENTS.UNACK} Number of unacknowledged events for a map element in
maps, or for the trigger which generated current event in
notifications.

{TRIGGER.EVENTS.PROBLEM.UNACK} Number of unacknowledged PROBLEM events for all triggers
disregarding their state.

{TRIGGERS.UNACK} Number of unacknowledged triggers for a map element,
disregarding trigger state.

{TRIGGERS.PROBLEM.UNACK} Number of unacknowledged PROBLEM triggers for a map
element.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.UNACK} Number of unacknowledged PROBLEM events for triggers in
PROBLEM state.

The following new macros have been added:

Macro Value

{TRIGGER.EVENTS.ACK} Number of acknowledged events for a map element in
maps, or for the trigger which generated current event in
notifications.

{TRIGGER.EVENTS.PROBLEM.ACK} Number of acknowledged PROBLEM events for all triggers
disregarding their state.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.ACK} Number of acknowledged PROBLEM events for triggers in
PROBLEM state.

{TRIGGERS.ACK} Number of acknowledged triggers for a map element,
disregarding trigger state.

{TRIGGERS.PROBLEM.ACK} Number of acknowledged PROBLEM triggers for a map
element.

7.1.14 Improved proxy view

Proxy view in Administration → DM → Proxies has been improved by adding two new columns - item count and required perfor-
mance (showing same information as in the server status report, new values per second). That should help with proxy hardware
requirement estimates.

41

7.1.15 Item and trigger inheritance chain

If an item or a trigger is coming from a nested template chain, it isn’t always obvious how exactly is it attached to the host. Since
1.8.3, in item or trigger editing form header full inheritance chain is shown, and it is possible to click on any template to see item
editing form for that template.

|<| |<| |-|

|<| |<| |-|

7.1.16 Improved text item and logfile viewing

In 1.8.2 and before, text item history had lots of vertical whitespace. Because of this less lines could fit in a screen. In 1.8.3,
vertical whitespace has been reduced considerably.

Text data in 1.8.2 and before Text data in 1.8.3

Note that in Zabbix history viewing newer items are at the top, so you have to read lines from bottom up.

While logfile viewing did not have so much excessive vertical whitespace, it could still be slightly reduced even when adding table
lines in 1.8.3.

Log data in 1.8.2 and before Log data in 1.8.3

7.1.17 Improved y axis labels

In previous versions, y axis labels for Zabbix graphs were displayed at even distances for full graph scale. In some cases, this
resulted in label values that were hard to read. For example, graph going from 0 to 100 would have labels including 18.33, 36.67
and 91.67. In Zabbix 1.8.3, label calculation is improved. Zabbix will split the scale based on some round value, thus in our
example values would become 20, 40 and 80. Additionally, if the graph has manual maximum scale entered, it is always printed.

42

If printing the maximum would collide with last rounded value, last rounded value is hidden. For example, on scale from 0 to 110
both of the labels 100 and 110 are printed. On scale from 0 to 101 only the label 101 is printed.

These benefits are visible both with large and small graph values.

Large values Small values

1.8.2 and before 1.8.3 1.8.2 and before 1.8.3

7.1.18 Ability to unlink and clear templates upon mass update

It is now possible to ”unlink and clear” (which not only unlinks the templates, but also deletes the linked elements) templates for
host mass update. For this purpose, checkbox ”Clear when unlinking” must be marked in the ”Replace linked templates” section
of the host mass update screen:

7.1.19 Improved trigger status filter

The filter in the ”Status of Triggers” page has been improved. Trigger acknowledge status has been brought out in a separate menu,
and a new filtering option is available - ”With last event unacknowledged”. With these changes it is again possible to display all
(including those in OK state) triggers for all hosts and host groups.

It is also now possible to filter triggers by age - option ”Age less than” allows to only show those triggers that have changed state
in last N days.

Additionally, several options have been renamed to make it more clear what they are about - for example, Select became Filter by
name.

43

7.1.20 Improved slideshow refresh rate selector

Instead of providing fixed periods, slideshow refresh can now be set to multiples of default settings. This allows to slow down or
speed up slideshow displaying while still maintaining relative time of displaying for each slide.

7.1.21 Translation updates

The following new translations have been added:

• Czech.

The following translations have been updated:

• Brazilian Portuguese;
• Chinese;
• French;
• German;
• Hungarian;
• Japanese;
• Latvian;
• Russian;
• Ukrainian.

7.1.22 Other frontend improvements

• Monitoring → Triggers section now shows the time it was last refreshed in the header.
• It is now possible to select multiple graphs, screens and maps when adding them to favourites on the dashboard.
• It is now possible to configure default axis side. Set in include/defines.inc.php, parameter GRAPH_YAXIS_SIDE_DEFAULT
controls this. See frontend definition documentation for more information.

• Date formats can now be specified as a part of the locale, thus appropriate format for each region can be used now.
• In calculated item editing, field Expression was renamed to Formula to be less confusing (because triggers already had
expression).

44

• Trigger option Multiple TRUE events was renamed to Multiple PROBLEM events to be consistent with other locations.
• Maximum rows per page and search limit increased to 99999.
• Screen name is shown when editing a screen.
• Row highlighting colour has been changed to be more visible.

Highlighting in 1.8.2 and before

Highlighting in 1.8.3

• Being in maintenance is also displayed in the Status column in the host configuration page.

• If a URL is included in host profile information and it starts with http or https, it results in a clickable link in the inventory
section.

• Host status now indicated by the text colour used for the host name in most locations in the frontend.
• Improved user macro handling - they can also be edited now.
• Switching item configuration filter options won’t reload the item list immediately anymore, thus making filter easier to use
on large installations. Also changing most options in item editing form won’t reload it, just the appropriate fields will be
updated - that should make item configuration easier.

• Improved performance by eliminating needless DISTINCT keyword usage. Some queries have improved in speed from 30
seconds to 0.1 second.

• Alternating row colours removed from all editing forms (they are still present in lists) and form background colour unified
across the frontend.

• Long host, host group and graph names could push selection dropdowns past the right edge of the browser window. In
1.8.3, the situation is improved by limiting dropdown width if element names are too long. Full names are still used in the
dropdown itself.

• Improved audit section names in dropdown and page header.
• Bundled DejaVu font upgraded from 2.30 to 2.31.
• Added link to host profile from dashboard, if host has profile information populated.

7.2 Server and proxy changes 7.2.1 Passive Zabbix proxy

Up to Zabbix version 1.8.3 Zabbix proxy was the one connecting to Zabbix server, and that was the only supported mode. But
if one would like to place Zabbix server inside the local network which would monitor host in DMZ by proxy, that would not be
possible - connection would have to go the other way.

Starting with version 1.8.3, Zabbix server and proxy communication can be in either direction. To control this, several new options
have been introduced.

45

http://dejavu-fonts.org/wiki/Main_Page

New options for the proxy:

• ProxyMode - controls the mode that proxy works in. By default, proxy works in active mode (connecting to sever). Setting
this parameter to 1 will make proxy wait for incoming server connections.

New options for the server:

• StartProxyPollers - how many special pollers for passive proxies to start.
• ProxyConfigFrequency - how often Zabbix server sends configuration changes to passive proxies.
• ProxyDataFrequency - how often Zabbix server requests data from passive proxies.

7.2.2 Changed configuration parameters

• Performance improvements in database synchronisation by introducing new server configuration parameter - StartDB-
Syncers. This allows to parallelise data writing to the database, resulting in notable improvement on powerful hardware.
By default 4 DB syncers are started.

• Made poller balancing more intuitive by making them take items from a single item queue. As a consequence, unreachable
server polling has also been improved and StartPollersUnreachable configuration parameter has been removed.

7.2.3 Server performance improvements

• Improved performance by not storing some runtime data in the database.
• Improved performance of updating trends in memory and their flushing to disk by caching required information.
• Faster configuration cache building both by improved SQL queries and in-memory optimisations.

7.2.4 Other server improvements

• Processes now provide more information on why they terminate. This should help greatly with Zabbix daemon debugging.
• Reduced amount of memory required for Zabbix server by storing repeated strings (like item keys) only once in the memory.
On larger setups this can result in tenfold reduction in the memory usage.

• Zabbix daemons now support binding to multiple network interfaces, thus it is possible to specify comma-separated list to
the ListenIP directive.

• Multirow inserts are used for PostgreSQL 8.2 and higher, which should improve the performance.
• If an e-mail subject would contain ASCII characters only, it won’t be Base64 encoded anymore (originally implemented in
1.8.2).

• Hostname is now printed in server error messages about simple checks. That should ease debugging of failing items.
• Outdated environment variable setting for alert scripts has been removed.

7.3 Other changes 7.3.1 New supported and changed items

7.3.1.1 Table record count

In addition to previously supported zabbix[history] and zabbix[trends] items, Zabbix now supports additional items to monitor
amount of values in corresponding tables. Note that on most database engines usage of these items can seriously degrade the
performance.

• zabbix[history_log]
• zabbix[history_str]
• zabbix[history_text]
• zabbix[history_uint]
• zabbix[trends_uint]

7.3.1.2 New simple checks

The following simple checks have been added:

• ldap
• ldap_perf
• ntp
• ntp_perf

7.3.1.3 More advanced queue item

Zabbix internal item zabbix[queue] gained parameter support. It is now possible to specify for how long item must be missing
data to be counted. For example, zabbix[queue,6,59] will count all items that are late by 6-59 seconds, inclusive. Time based
suffixes are supported for these parameters, so the following syntax will check for all items that are haven’t been refreshed between
one minute and 6 hours: zabbix[queue,1m,6h].

By default first value is 6, and second value is empty, which means infinity.

7.3.1.4 Item changes

46

• Parameter service.ntp for item keys net.tcp.service and net.tcp.service.perf renamed to ntp. Old syntax is still sup-
ported.

7.3.2 Changed acknowledge logic

This version changes how acknowledge works. In previous versions, if a trigger was acknowledged and changed state to UNKNOWN,
then back, this new event would not be acknowledged (and in turn, trigger would become un-acknowledged). Since version 1.8.3,
any acknowledge is copied to all events of the same type that are separated by UNKNOWN events. For example, if events have
happened like this (newer events on top):

9. PROBLEM
8. OK
7. UNKNOWN
6. OK
5. PROBLEM
4. UNKNOWN
3. PROBLEM
2. OK
1. PROBLEM

Acknowledging event number 3 in the frontend would add the same acknowledge to event 5, and vice versa. If new events would
now happen:

11. PROBLEM
10. UNKNOWN
...

In this case Zabbix server would add the acknowledge (if any) from event 9 to the new PROBLEM event number 11.

There is one exception - multiple TRUE (PROBLEM) triggers do not get the acknowledges copied over from other events.

7.3.3 Requirement changes

7.3.3.1 MySQL 5.5 supported

Upcoming MySQL version 5.5 drops support for table keyword type, and using ENGINE is required. Zabbix 1.8.3 changes to usage
of keyword ENGINE.

8 What’s new in Zabbix 1.8.4

8.1 Frontend improvements 8.1.1 Host configuration filter

Zabbix 1.8.4 introduces a filter in host configuration. In addition to the group selector, it is now possible to filter hosts on:

• Name
• IP
• DNS
• Port

Name, IP and DNS filter works as a substring, port is an exact match.

8.1.2 More control over rounding

Previously, value rounding in Zabbix was pretty much hardcoded. For example, version 1.8.3 displayed 2 decimal places for
numbers above 1, and 6 decimal places for numbers below 1. 1.8.4 changes the threshold to 0.01 to reduce clutter, but additionally
it provides more control over rounding. In the frontend definition file, three new parameters can be configured.

• ZBX_UNITS_ROUNDOFF_THRESHOLD

Threshold value for roundoff constants. Values less than this will be rounded to ZBX_UNITS_ROUNDOFF_LOWER_LIMIT number of
digits after comma, greater to ZBX_UNITS_ROUNDOFF_UPPER_LIMIT. Default: 0.01

• ZBX_UNITS_ROUNDOFF_UPPER_LIMIT

Number of digits after comma, when value is greater than roundoff threshold. Default: 2

47

• ZBX_UNITS_ROUNDOFF_LOWER_LIMIT

Number of digits after comma, when value is less than roundoff threshold. Default: 6

The default value change alone should reduce clutter in graph legend for items like CPU load. A few examples of the added
configurability (legend in all the examples is based on the same data)):

Default roundoff values with 2 decimal places > 0.01 and 6 below

All roundoff limited to two digits

Default roundoff values, but threshold changed to 0.02

8.1.3 XML validation

To catch any issues with XML as early as possible, Zabbix 1.8.4 introduces XML validation before importing it. This currently checks
generic things like XML structure and data types, and is only available for screen import. Nevertheless, it should improve data
quality, especially for users who generate screen configuration outside Zabbix.

8.1.4 Zapcat compatibility mode

Based on user feedback, this version introduces a new parameter that allows to enable Zapcat legacy support. When enabled,
parameter ZAPCAT_COMPATIBILITY allows to use item key syntax that would otherwise be rejected as invalid. Please note that this
is legacy syntax support which will be only available in 1.8 series.

8.1.5 Reversed steps in web monitoring graph legend

Built-in web monitoring graphs have had entries reversed in their legend to better match the order in web scenario configuration,
so for steps like these:

output has changed like this:

Before 1.8.4 Since 1.8.4

8.1.6 Trigger expression helper improvements

Two minor improvements are available for the trigger expression helper.

8.1.6.1 Entering function parameter time_shift

It is now possible to enter time_shift trigger function parameter in the trigger expression helper.

48

8.1.6.2 Filtered function dropdown

When choosing function to be used in constructed trigger expression, previously all choices were displayed always. Now dropdown
list is filtered so that only functions that are valid for the chosen item type are available.

8.1.7 List of all hosts available in hostgroup properties

It should be easier to edit hostgroup membership on small Zabbix setups now - the view of other hosts gained ability to list all
hosts that don’t belong to the currently edited group.

8.1.8 Zabbix server details visible in status report

In Reports → Status of Zabbix (available also as a dashboard widget for Zabbix superadmins), Zabbix server host and port are now
displayed, as configured in the frontend.

8.1.9 Setting server name during the installation

The feature introduced in Zabbix 1.8, ability to display server name on the frontend, can now be configured using the frontend
configuration wizard.

8.1.10 Frontend history override parameter

A new frontend definition has been added - ZBX_HISTORY_DATA_UPKEEP

This parameter allows to override frontend’s choices when deciding whether to use history or trends table to display data, specified
in days. Possible values:

• lower then zero - Zabbix uses the ”Keep history” value for each item

49

• equal to zero - Zabbix only uses trend data
• greater then zero - Zabbix always uses this value instead of the ”Keep history” value

The default behaviour does not change and Zabbix still uses ”Keep history” value for each item.
This might be useful in setups with partitioned data storage.

8.1.11 Updated translations

• French
• Latvian
• Russian
• Ukrainian

8.1.12 Other frontend improvements

• Improved network map performance.
• Improved Administration → Notifications report performance.
• Bundled DejaVu font upgraded from 2.31 to 2.32.
• Screens can now be referenced on the frontend not only by id, but also by name. Adding GET parameter screenname will
open the screen with that name, for example:

http://zabbix/zabbix/screens.php?screenname=Local%20servers

If both elementid (screen id) and screenname are specified, screenname has higher priority.
If screenname parameter is used, selected screen won’t be saved in user profile - that is, revisiting screen section later will
retrieve previously chosen screen, not the one referenced by name.

8.2 New and changed supported items

• On Linux, support for net.tcp.listen and net.udp.listen items has been added.
• Network traffic can now be monitored on OpenBSD without being root.
• Format of the sensors key has been changed. This item is now supported on Linux 2.4 and OpenBSD.

8.3 Zabbix daemon related improvements 8.3.1 Zabbix agent daemon improvements

On AIX, supported technology level is printed when executing agent with --version flag. Possible values:

• Supported technology levels: 5100
• Supported technology levels: 5200
• Supported technology levels: 5300-00,01,02,03,04,05
• Supported technology levels: 5300-06 and above
• Supported technology levels: 6100 and above

8.3.2 Zabbix sender improvements

Zabbix sender is a command line utility for sending custom data to Zabbix server.

8.3.2.1 Value pooling

Utility zabbix_sender has been improved in realtime sending scenarios by gathering multiple values that are passed to it in close
succession, and sending them to the server in single connection. Value that is not further apart from previous value than 0.2
seconds can be put in the same stack, but maximum pooling time still is 1 second.

8.3.2.2 Using default hostname

It is now possible to use hostname ”-” in the input file. This will use the default hostname from the configuration file, thus allowing
to send data in always using local hostname instead of hardcoding it.

8.3.3 Zabbix server improvements

Zabbix server performance has been improved for trigger functions last and prev by not retrieving redundant information from
the database.

Memory usage has been reduced for web monitoring.

Reduced memory usage and fragmentation for the configuration cache.

Unreachable poller concept has been reintroduced along with resurrection of StartPollersUnreachable Zabbix server config-
uration parameter.

Zabbix server by default is not built with libcurl support anymore - it has to be specified explicitly.

8.3.3.1 New and improved macros

Support for several new macros has been added in notifications.

50

• {PROXY.NAME} macro is now available in trigger, network discovery and active agent auto-registration notifications
• {HOSTNAME} macro is available in active agent auto-registration notifications
• Value mapping is now available for {ITEM.VALUE} macro in trigger notifications

8.3.3.2 New trigger functions

New trigger function has been added - strlen, which returns length of the last value in characters.

8.3.3.3 Improved error messages

Error messages in the Zabbix server logfile regarding web monitoring have been improved - now they will also include information
about scenario and step that produced the error message.

8.3.3.4 Improved fping handling with source IP specified

Utility used by Zabbix to perform ICMP pings, fping, is not very actively maintained, thus several features are only available as
patchsets. One of those is an ability to specify source IP, which can either be unsupported, or supported with different flags (-S or
-I). If SourceIP parameter is specified in Zabbix server configuration file, Zabbix attempts to specify source IP for fping as well.
Before 1.8.4, Zabbix server always passed -S. If that was not supported, it just failed. Starting with 1.8.4, Zabbix server tries to
detect whether -S or -I is supported. If neither is, fping is called without source IP parameter.

This detection happens by looking at the output of fping -h. In Zabbix 1.8.4, each pinger process detects fping capabilities
individually when it is started.

8.4 Misc improvements User parameters in agent daemon files have been split out in several files that are included from the
main configuration file. More examples have been added as well.

8.4.1 DB2 support

Support for additional database backend - IBM DB2 - has been added.

8.4.2 Extended user macro support

User macros can now be used in these additional locations:

• SNMP items and discovery
– community
– OID
– security name
– auth passphrase
– priv passphrase

• parameters field of database item
• item descriptions and trigger names

8.4.3 NTLM authentication for web monitoring

For built-in web monitoring, NTLM (Windows NT LAN Manager) authentication is now supported.

51

http://fping.sourceforge.net/
http://en.wikipedia.org/wiki/IBM_DB2
http://en.wikipedia.org/wiki/NTLM

8.4.4 Direct support for Ez Texting

It is now possible to use Zabbix technological partner Ez Texting for message sending without custom media types - it can be
selected as one of directly supported media types and access details can be provided in Zabbix media definition.

8.4.5 Improved problem reporting

If Zabbix server is compiled without web monitoring support, but web monitoring is attempted to be used, a helpful message will
be visible in the frontend:

9 What’s new in Zabbix 1.8.5

9.1 Frontend improvements 9.1.1 Network map improvements

Network maps can now be referenced on the frontend not only by id, but also by name, just like screens in 1.8.4. Adding GET
parameter mapname will open the map with that name, for example:

http://zabbix/zabbix/maps.php?mapname=Drag%20and%20drop%20map

If both sysmapid (network map ID) and mapname are specified, mapname has higher priority.

If mapname parameter is used, selected network map won’t be saved in user profile - that is, revisiting map section later will
retrieve previously chosen map, not the one referenced by name.

9.1.2 Removed Zapcat compatibility switch

Zapcat compatibility switch, added in 1.8.4, has been removed. Instead, expression parser has been reworked to accept Zapcat
syntax by default.

9.1.3 Reordered configuration menu

Sequence of configuration menu entries Discovery and IT services was changed to match the one in monitoring section.

52

http://www.zabbix.com/partners.php#Technology_Partners

9.1.4 Added translations

• Slovak

9.1.5 Updated translations

• Brazilian Portuguese
• Latvian
• Japanese
• Russian
• Ukrainian

9.2 Zabbix daemon improvements 9.2.1 Zabbix agent improvements

9.2.1.1 Improved performance

Zabbix agent performance has been improved, especially on systems with many cores.

9.2.1.2 Unified internal process startup messages

Zabbix agent now prints internal process types upon startup just like the server does. Example Zabbix agent daemon startup log:

943:20110224:111750.848 agent #0 started [collector]
943:20110224:111750.848 agent #1 started [listener]
943:20110224:111750.850 agent #2 started [listener]
943:20110224:111750.851 agent #3 started [listener]
943:20110224:111750.851 agent #4 started [active checks]

9.2.2 New items supported

New internal item was added to monitor Zabbix process state. Item zabbix[process,<type>,<mode>,<state>] allows to
monitor busy or idle percentage of different Zabbix server processes over the last minute.

It is now possible to determine how much each of Zabbix server internal processes spent in a busy state. This should help with
evaluating performance, estimating how many poller processes to use and other Zabbix finetuning tasks.

9.2.3 Process limits changed

Zabbix daemon internal process limits have been changed. These changes affect Zabbix server and proxy daemons.

Option Previous limit New limit

StartDBSyncers 64 100
StartDiscoverers 255 250

53

Option Previous limit New limit

StartHTTPPollers 255 1000
StartIPMIPollers 255 1000
StartPingers 255 1000
StartPollersUnreachable 255 1000
StartPollers 255 1000
StartProxyPollers 255 250
StartTrappers 255 1000

For Zabbix agent daemon, maximum value of StartAgents has been increased from 16 to 100.

9.2.4 Listening on IPv6 and IPv4

Support for listening on all IPv4 and IPv6 addresses at the same time has been added.

9.2.5 Global regular expression support with proxies

Global (user definable) regular expression support has been added for use with Zabbix proxies.

9.3 Misc improvements Added Ubuntu upstart configuration files.

9.3.1 New trigger functions

Several new trigger functions have been added.

• dayofmonth returns current date
• logeventid checks whether Event ID of the last log entry matches a regular expression

10 What’s new in Zabbix 1.8.6

10.1 Frontend improvements

• When switching from one host to another while having a custom graph open, Zabbix will try to select a graph with the same
name on the target host.

• Previously, graph mode dynamic or fixed was reset back to fixed whenever the page was reloaded. Starting with Zabbix
1.8.6, this mode is saved for each location (graphs, screens etc) individually.

10.1.1 Updated translations

• Japanese

10.2 Zabbix daemon improvements

• Zabbix proxy now logs a message when it receives the configuration data from the server.
• All Zabbix daemons now refuse to start up if configuration file contains unrecognised parameters. This should help to discover
incorrectly spelt parameters.

• Improved Zabbix server performance when gathering text data.
• Improved Zabbix server performance when processing unsupported items. Previously, information about unsupported pa-
rameters was stored directly in the database bypassing write cache. Starting with 1.8.6, it uses write cache, thus reducing
database load. Internal item zabbix[wcache,...] has been extended to monitor amount of not supported values in the
cache.

• It is now possible to customise automatic host name setting on the Zabbix agent and proxy daemons. Previously, it always
returned system.hostname contents. A new configuration parameter, HostnameItem, allows to set another item that will
be used if configuration parameter Hostname is not set. If both HostnameItem and Hostname are set, Hostname takes
precedence.

• For Jabber/XMPP notifications, server now supports SRV record lookup.
• Improved housekeeper performance on PostgreSQL.
• Warnings while connecting to Oracle database are now logged.
• Zabbix agents and proxies now log their hostname in the log file when starting up. Additionally, Zabbix proxies log whether
they are operating in the passive or active mode.

10.2.1 Configuration cache reloading

54

Zabbix server and proxy daemons now have an ability to reload in-memory configuration cache upon request. This can be done
by passing parameter -R or --runtime-control and a runtime control option. Currently only one runtime option is supported -
config_cache_reload.

Additional benefit when using active Zabbix proxies is that active proxy will request configuration from the Zabbix server upon
receiving this request.

When a daemon receives such a request, it also logs it in the logfile. If the request is sent while configuration cache is being
updated, it is ignored (but log file entry about signal received is still added).

10.3 Item changes

• Item vfs.file.md5sum[] previously was limited to files less than 64MB. This limit has been removed in 1.8.6 and item is
only limited by the time it takes to compute the checksum.

• Item system.hostname[] on Windows now has an additional parameter to choose between NetBIOS and host name.
• Items vfs.dev.read and vfs.dev.write have gained support for LVM. Additionally, in previous versions of Zabbix only relative
device name could be used (like sda). Now /dev/ prefix may also optionally be used. A few examples of supported syntax:
– vfs.dev.read[mapper/VolGroup01-LogVol00,sectors]
– vfs.dev.read[VolGroup01/LogVol00,sectors]
– vfs.dev.read[/dev/sda,operations]
– vfs.dev.read[sdb,operations]

• Items net.tcp.dns.query gained support for SRV records.
• net.if.* checks under Windows now support multibyte NIC names.

10.4 General changes Support for PostgreSQL 9+ was added.

11 What’s new in Zabbix 1.8.7

11.1 Frontend improvements 11.1.1 Improved time picker

When dates in the upper right corner of the time scrollbar are clicked, popup appears with a calendar and input fields for time.
Previously, it could only be confirmed by clicking on a date, and that also immediately closed it. Thus, to select time and date,
one had to enter time first, then click on a date. Zabbix 1.8.7 improves usability of this popup. A button Done was added. Clicking
on a date now does not close the popup, thus user may choose desired date and time and click on Done when satisfied with the
selection.

Additionally, Now button was added that sets the calendar date and time to current moment (but still keeps it open).

Clicking on the date/time string again will close the popup and discard the changes.

11.1.2 Default action conditions

When a new action for triggers is created, it now gets two additional conditions automatically:

• Trigger value = PROBLEM

55

• Maintenance status = not in maintenance

11.1.3 Updated translations

• Japanese
• French

11.2 API improvements API flag searchWildcardsEnabled has been added. If it is set to 1, database wildcards may be
used in search patterns.

11.3 Daemon improvements Zabbix server has a capability to notify users in a specific user group in case of database unavail-
ability. Previously, Zabbix server only loaded user information when starting up. Now watchdog process reloads this information
every CacheUpdateFrequency seconds, which is every 60 seconds by default. This is a separate reloading than general config-
uration cache updating, thus it is not affected by the forced cache reloading.

11 What’s new in Zabbix 1.8.8

11.1 Frontend improvements 11.1.1 Latest data improvements

• Starting with Zabbix 1.8.8, all hosts and hostgroups are shown in Monitoring → Latest data. Previously, hosts without data
were not listed here.

• Monitoring → Latest data section gains a new filter to show items without data. Previously, they were not displayed at all.
By default such items are still not visible.

11.1.2 API changes

• API search wildcard was changed from ”%” to ”*”

11.1.3 Updated translations

• French

11.2 Daemon improvements 11.2.1 Zabbix server improvements

Zabbix server performance has been improved when calculating trigger expressions.

The processes that take values from history cache and put them in the database - history syncers (configured by the server
configuration parameter StartDBSyncers) take up to 1000 values on each iteration and calculate all triggers that reference
corresponding items. Previously, each trigger function would result in a separate query to the database. Starting with Zabbix
1.8.8, a single SQL query is prepared for all of the functions in all triggers that history syncer has been tasked with updating.

Additionally, if there are multiple triggers in such a batch that check text or log items, last two values for items like those are
cached for the current run.

In total, this results in a significantly decreased query count against the database and thus performance improvements.

The same improvements also affect the internal timer process (only one such process may run currently), which calculates triggers
that include time based functions.

History syncers try to take a new batch of values from the history cache 0-5 seconds after they have finished the work on the
previous one, based on how many values it got previously (for example, if it got 1000 values, it will make the next attempt
immediately after finishing the work).

11.3 General improvements Macro {TRIGGER.ID} is now supported in frontend and notifications if used inside trigger URL
field.

11 What’s new in Zabbix 1.8.9

56

11.1 Frontend improvements Improved performance for event acknowledging.

11.1.1 Updated translations

• Brazilian Portuguese

11.2 Supported PostgreSQL version changes

• Support for PostgreSQL 9.1 was added
• PostgreSQL support changed from 7.0.2 and later to 7.4 and later.

11.3 Zabbix daemon improvements 11.3.1 Zabbix server improvements

11.3.1.1 Improved log messages

Zabbix server log messages about failed checks have been improved. Previously, if a check failed, Zabbix server would log
messages, similar to these:

Zabbix host [monitored host]: first network error, wait for 15 seconds
Zabbix host [monitored host]: another network error, wait for 15 seconds

After 3 failures like these, host would be disabled and a message logged:

Disabling Zabbix host [monitored host]

If a host then became available, a log message would say:

Enabling Zabbix host [monitored host]

Starting with Zabbix 1.8.9, this has been improved. First, messages now tell which specific item key failed, thus allowing to see
whether the problem happens with multiple items or just one:

Zabbix agent item [proc.num[sshd]] on host [monitored host] failed: another network error, wait for 15 seconds
Zabbix agent item [system.cpu.load] on host [monitored host] failed: another network error, wait for 15 seconds

Additionally, for all failures item type is logged as well (in this case, Zabbix agent).

If a host is determined to be unavailable and then available, messages are a bit more verbose now and also include check type:

temporarily disabling Zabbix agent checks on host [monitored host]: host unavailable
enabling Zabbix agent checks on host [monitored host]: host became available

And a new message has been introduced if host responds after one or two failures (this was not logged before at all):

resuming Zabbix agent checks on host [monitored host]: connection restored

These changes should allow for much easier debugging of connectivity or configuration issues - for example, if all problems on a
host would be associated with a user parameter, it would most likely be a performance problem with the executed command.

11.3.1.2 Acknowledge synchronisation in distributed mode

Starting with Zabbix 1.8.9 acknowledge status will be fully synchronised from child nodes to master node.

11.3.1.3 Performance improvements

Zabbix server performance was improved in some edge cases by skipping value updating for disabled or removed items.

11.3.1.4 Waiting for database to appear upon startup

Starting with Zabbix 1.8.9, upon startup Zabbix daemons will wait for database to be available. This will help with case when
database is started by bootup process before Zabbix daemons, but takes long time to become ready.

11.3.2 Zabbix agent improvements

Zabbix agent daemon performance on AIX was improved by only collecting perfstat data if it is requested.

12 What’s new in Zabbix 1.8.10

12.1 Frontend improvements 12.1.1 Updated translations

• French
• Japanese
• Russian

57

12.2 Server improvements Zabbix server housekeeper process previously only logged the amount of values that were removed
from history and trends. Starting with Zabbix 1.8.10 it also logs the amount of values removed for deleted items, events, alerts
and sessions.

13 What’s new in Zabbix 1.8.11

13.1 Frontend improvements Global script error messages now suggest possible causes of the problem.

13.1.1 Updated translations

• Brazilian Portuguese
• French
• Japanese

13.2 Daemon improvements

• Added support for individual CPU statistics in system.cpu.util item on FreeBSD
• Support for all data types in SNMP dynamic indexes has been added
• Added possibility to remove a discovered host from ”Discovered hosts” group by action
• Previously, Zabbix daemons used a hardcoded priority of 5. Starting with 1.8.11, default or user specified priority is used
without any overrides on the Zabbix side

• Unused options TrendCacheSize and CacheUpdateFrequency have been removed from Zabbix proxies
• Error messages for missing SNMP instances are now more user friendly
• Unneeded information like user history for nodes and web monitoring items for proxies is not synchronised to them anymore
• Command line arguments that exceed 2KB are now supported in proc.num and proc.mem checks on Linux

14 What’s new in Zabbix 1.8.12

14.1 Multiple server support in active agent Previously, Zabbix agent was able to communicate with one server or proxy in
the active mode. In 1.8.12, a new parameter ServerActive has been added. If it is defined, only the hosts in this list will be used
for active checks.

For each host in the list, a separate process will get list of items and process them - thus each server or proxy can send a totally
different list of active checks to the agent and only get their values.

Zabbix sender does not use ServerActive parameter - it still takes the first value from Server parameter only.

Note:
See the ”See also” section at the bottom of this page to read more details about these changes.

14.2 New macros Support for macros {ITEM.ID<1-9>} and {TRIGGER.EXPRESSION} has been added in notifications and com-
mands.

See also

1. Differences in the Zabbix agent configuration for active and passive checks starting from version 1.8.12

15 What’s new in Zabbix 1.8.13

15.1 Frontend improvements Improved performance of ’Status of Zabbix’ dashboard widget

15.1.1 Updated translations

• French

58

http://blog.zabbix.com/multiple-servers-for-active-agent-sure/858

15.2 Daemon improvements

• Zabbix server performance when using a partitioned PostreSQL setup was improved.
• A new item has been added - agent.hostname. It returns the value agent would use for communicating with Zabbix server
or proxy for active items. As an agent can obtain this value from 3 different sources (Hostname configuration parameter,
item key, specified in HostnameItem parameter or from the default system.hostname key), the new item allows to
determine what is the actual value for debugging or verification purposes.

15 What’s new in Zabbix 1.8.14

15.1 Frontend improvements Improved screen performance for non-Superadmin users.

16 What’s new in Zabbix 1.8.15

16.1 Frontend improvements Performance in graph related pages was improved.

17 What’s new in Zabbix 1.8.16

17.1 Daemon improvements

• Suffixes ”KMGTsmhdw” are now supported in the second parameter of count() trigger function
• Previously it was possible to send large amount of data to the Zabbix server, potentially exhausting memory. This is now
limited to accept only 128MB when using Zabbix protocol. Any other data (including older Zabbix protocols) stays limited at
16MB.

• When encoding email subject from UTF-8 to Base64, lines longer than 75 bytes will be split up to conform with RFC-2047.

18 What’s new in Zabbix 1.8.17

18.1 Frontend improvements 18.1.1 Updated translations

• Japanese

18.2 Daemon improvements 18.2.1 Improved SNMP performance

• Performance of the SNMP normalize function was improved.
• Previously, each dynamic index was obtained individually when requested. On systems with thousands of dynamic indexes
Zabbix pollers were 100% busy for more than 10 minutes until the cache was built up. Now the first dynamic index request
will cause all indexes in the same SNMP table to be looked up and processed in one go. This greatly speeds up the cache
building and reduces the SNMP query count. Note that all entries are looked up even if only some would be used later.

18.3 Miscellaneous improvements Zabbix sender now supports ServerActive parameter from the agent daemon configuration
file. The first IP address is used.

19 What’s new in Zabbix 1.8.18

19.1 Daemon improvements

• Zabbix server now correctly enables SSL host verification when using Ez Texting service to send alerts.

59

20 What’s new in Zabbix 1.8.20

20.1 Daemon improvements

• Zabbix application names in syslog fixed to meet RFC 5424 for APP-NAME. See Syslog application names change

20.2 Frontend improvements

• LDAP authetication bind password, once stored in the database, was accessible to Zabbix Super Admin level users in clear
text in HTML source code. Fixed for 1.8.20, by hiding the password from clear view.

21 What’s new in Zabbix 1.8.21

21.1 Frontend improvements

• Improved SQL query performance and page execution in Maintenance configuration page.

22 What’s new in Zabbix 1.8.22

Warning:
Zabbix 1.8 is not supported anymore. See lifecycle and release policy page for more information.

Zabbix 1.8.22 was a bugfix release that received no functional improvements.

2 Installation

how_to_get_zabbix requirements components installation_from_source upgrading appliance

1 How to Get Zabbix

Check the Zabbix Home Page at http://www.zabbix.com for information about the current version and for downloading instructions.

Zabbix is distributed as a source package, however it is also included into number of OS distributions pre-compiled.

2 Requirements

2.1 Hardware requirements

2.1.1 Memory Requirements

Zabbix requires both physical and disk memory. 128 MB of physical memory and 256 MB of free disk space could be a good
starting point. However, the amount of required disk memory obviously depends on the number of hosts and parameters that are
being monitored. If you’re planning to keep a long history of monitored parameters, you should be thinking of at least a couple of
gigabytes to have enough space to store the history in the database. Each Zabbix daemon process requires several connections
to a database server. Amount of memory allocated for the connection depends on configuration of the database engine.

Note:
The more physical memory you have, the faster the database (and therefore Zabbix) works!

2.1.2 CPU Requirements

60

http://www.zabbix.com/life_cycle_and_release_policy.php
http://www.zabbix.com

Zabbix and especially Zabbix database may require significant CPU resources depending on number of monitored parameters and
chosen database engine.

2.1.3 Other hardware

A serial communication port and a serial GSM Modem required for using SMS notification support in Zabbix. USB-to-serial converter
also will work.

2.1.4 Examples of hardware configuration

The table provides several hardware configurations:

Name Platform CPU/Memory Database Monitored hosts

Small Ubuntu Linux PII 350MHz 256MB MySQL MyISAM 20
Medium Ubuntu Linux 64

bit
AMD Athlon 3200+ 2GB MySQL InnoDB 500

Large Ubuntu Linux 64
bit

Intel Dual Core 6400
4GB

RAID10 MySQL
InnoDB or
PostgreSQL

>1000

Very large RedHat Enterprise Intel Xeon 2xCPU 8GB Fast RAID10 MySQL
InnoDB or
PostgreSQL

>10000

Note:
Actual configuration depends on number of active items and refresh rates very much. It is highly recommended to run the
database on a separate box for large installations.

2.2 Supported Platforms

Due to security requirements and mission-critical nature of monitoring server, UNIX is the only operating system that can consis-
tently deliver the necessary performance, fault tolerance and resilience. Zabbix operates on market leading versions.

Zabbix is tested on the following platforms:

• AIX
• FreeBSD
• HP-UX
• Linux
• Mac OS/X
• NetBSD
• OpenBSD
• SCO Open Server
• Solaris
• Windows 2000, 2003, XP, Vista (only Zabbix agent)

Note:
Zabbix may work on other Unix-like operating systems as well.

2.3 Software Requirements

Zabbix is built around modern Apache WEB server, leading database engines, and the PHP scripting language.

The following software is required to run Zabbix:

Software Version Comments

Apache 1.3.12 or later
PHP 5.0 or later
PHP modules:
php-gd GD 2.0 or later PHP GD module must support PNG

images.
PHP TrueType support --with-ttf
PHP bc support php-bcmath, --enable-bcmath
PHP XML support php-xml or php5-dom, if provided as a

separate package by the distributor
PHP session support php-session, if provided as a separate

package by the distributor

61

Software Version Comments

PHP socket support php-net-socket, --enable-sockets.
Required for user script support.

PHP multibyte support php-mbstring, --enable-mbstring
IBM DB2
ibm_db2 Required if IBM DB2 is used as Zabbix

back end database.
MySQL
php-mysql 3.22 or later Required if MySQL is used as Zabbix back

end database.
Oracle
oci8 Required if Oracle is used as Zabbix

back-end database.
PostgreSQL
php-pgsql 7.0.2 or later if Zabbix 1.8.9

7.4 or later if Zabbix >= 1.8.9
Required if PostgreSQL is used as Zabbix
back-end database.
Consider using PostgreSQL 8.x or later
for much better performance.
It is suggested to use at least PostgreSQL
8.3, which introduced much better
VACUUM performance.

SQLite
php-sqlite3 3.3.5 or later Required if SQLite is used as Zabbix
back-end database.

Note:
Zabbix may work on previous versions of Apache, MySQL, Oracle, and PostgreSQL as well.

Attention:
For other fonts than the default DejaVu, PHP function imagerotate might be required. If it is missing, these fonts might be
rendered incorrectly in Monitoring → Overview header and other locations. This function is only available if PHP is compiled
with bundled GD, which is not the case in Debian and other distributions.

2.3.1 WEB browser on client side

Support for HTML and PNG images is required. Cookies and Java Script must be enabled. Latest versions of Mozilla Firefox, Microsoft
Internet Explorer, Opera and Konqueror are supported. Other browsers (Google Chrome, Apple Safari) may work with Zabbix as
well.

2.4 Server requirements

Requirement Description

OpenIPMI Required for IPMI support
libssh2 Required for SSH support. Version 1.0 or higher.
fping Required for ICMP ping items.

2.5 Choice of database engine

Zabbix Server and Proxy support five database engines:

• IBM DB2
• MySQL
• Oracle
• PostgreSQL
• SQLite

Note:
IBM DB2 is supported starting from Zabbix 1.8.4.

2.6 Database size

Zabbix configuration data require a fixed amount of disk space and do not grow much.

Zabbix database size mainly depends on these variables, which define the amount of stored historical data:

• Number of processed values per second

62

http://www.postgresql.org/docs/8.3/static/release-8-3.html
http://www.postgresql.org/docs/8.3/static/release-8-3.html
http://php.net/manual/en/function.imagerotate.php

This is the average number of new values Zabbix server receives every second. For example, if we have 3000 items for monitoring
with refresh rate of 60 seconds, the number of values per second is calculated as 3000/60 = 50.

It means that 50 new values are added to Zabbix database every second.

• Housekeeper settings for history

Zabbix keeps values for a fixed period of time, normally several weeks or months. Each new value requires a certain amount of
disk space for data and index.

So, if we would like to keep 30 days of history and we receive 50 values per second, total number of values will be around
(30*24*3600)* 50 = 129.600.000, or about 130M of values.

Depending on the database engine used, type of received values (floats, integers, strings, log files, etc), the disk space for keeping
a single value may vary from 40 bytes to hundreds of bytes. Normally it is around 50 bytes per value. In our case, it means that
130M of values will require 130M * 50 bytes = 6.5GB of disk space.

• Housekeeper setting for trends

Zabbix keeps a 1-hour max/min/avg/count set of values for each item in the table trends. The data is used for trending and long
period graphs. The one hour period can not be customised.

Zabbix database, depending on database type, requires about 128 bytes per each total. Suppose we would like to keep trend data
for 5 years. Values for 3000 items will require (3000/3600)*(24*3600*365)* 128 = 3.4GB per year, or 16.8GB for 5 years. The
first value 3600 in the formula represents trend averaging period, one hour.

• Housekeeper settings for events

Each Zabbix event requires approximately 130 bytes of disk space. It is hard to estimate the number of events generated by
Zabbix daily. In the worst case scenario, we may assume that Zabbix generates one event per second.

It means that if we want to keep 3 years of events, this would require 3*365*24*3600* 130 = 12.3GB

The table contains formulas that can be used to calculate the disk space required for Zabbix system:

Parameter Formula for required disk space (in bytes)

Zabbix
configuration

Fixed size. Normally 10MB or less.

History days*(items/refresh rate)*24*3600*bytes
items : number of items
days : number of days to keep history
refresh rate : average refresh rate of items
bytes : number of bytes required to keep single value, depends on database engine, normally 50
bytes.

Trends days*(items/3600)*24*3600*bytes
items : number of items
days : number of days to keep history
bytes : number of bytes required to keep single trend, depends on database engine, normally 128
bytes.

Events days*events*24*3600*bytes
events : number of event per second. One (1) event per second in worst case scenario.
days : number of days to keep history
bytes : number of bytes required to keep single trend, depends on database engine, normally 130
bytes.

So, the total required disk space can be calculated as:
Configuration + History + Trends + Events
The disk space will NOT be used immediately after Zabbix installation. Database size will grow then it will stop growing at some
point, which depends on hosekeeper settings.

Note:
Disk space requirements for nodes in distributed setup are calculated in a similar way, but this also depends on a total
number of child nodes linked to a node.

2.7 Time synchronisation

It is very important to have precise system date on server with Zabbix running. ntpd is the most popular daemon that synchronizes
the host’s time with the time of other machines.

63

http://www.ntp.org/

3 Components

3.1 Zabbix Components

Zabbix consists of several major software components, the responsibilities of which are outlined below.

3.2 Zabbix Server

This is the centre of the Zabbix software. The Server can remotely check networked services (such as web servers and mail servers)
using simple service checks, but it is also the central component to which the Agents will report availability and integrity information
and statistics. The Server is the central repository in which all configuration, statistical and operational data are stored, and it is
the entity in the Zabbix software that will actively alert administrators when problems arise in any of the monitored systems.

Zabbix can also perform agent-less monitoring and also monitor network devices using SNMP agents.

3.3 Zabbix Proxy

The Proxy is an optional part of Zabbix deployment. The Proxy collects performance and availability data on behalf of Zabbix
Server. All collected data is buffered locally and transferred to Zabbix Server the Proxy belongs to.

Zabbix Proxy is an ideal solution for a centralizedmonitoring of remote locations, branches, networks having no local administrators.

Zabbix Proxies can also be used to distribute load of a single Zabbix Server. In this case, only Proxies collect data thus making
processing on the Server less CPU and disk I/O hungry.

3.4 Zabbix Agent

In order to actively monitor local resources and applications (such as harddrives, memory, processor statistics etc.) on networked
systems, those systems must run the Zabbix Agent. The Agent will gather operational information from the system on which it is
running, and report these data to the Zabbix for further processing. In case of failures (such as a harddisk running full, or a crashed
service process), the Zabbix Server can actively alert the administrators of the particular machine that reported the failure.

The Zabbix Agents are extremely efficient because of use of native system calls for gathering statistical information.

3.5 The WEB Interface

In order to allow easy access to the monitoring data and the configuration of Zabbix from anywhere and from any platform, the
Web-based Interface is provided. The Interface is a part of the Zabbix Server, and is usually (but not necessarily) run on the same
physical machine as the one running the Zabbix Server.

Note:
Zabbix front-end must run on the same physical machine if SQLite is used.

4 Installation from Source

4.1 Software requirements

Building of Zabbix server or agents from sources requires additional software.

The following software is required to compile Zabbix (required versions):

One of the following database engines:

• IBM DB2 Headers and Libraries - CLI headers and libraries are required.

• MySQL Headers and Libraries.

• Oracle Headers and Libraries - OCI headers and libraries are required.

• PostgreSQL Headers and Libraries.

• SQLite Headers and Libraries.

Note:
Usually provided as part of mysql-dev, postgresql-dev, sqlite3-dev packages.

NET-SNMP (or UCD-SNMP) library and header files. Required for SNMP support. Optional.

Iksemel library and header files. Required to enable Jabber messaging. Optional.

64

Libcurl library and header files. Required for WEB monitoring module. Optional.

C Compiler. GNU C compiler is the best choice for open platforms. Other (HP, IBM) C compilers may be used as well.

GNU Make. GNU Make is required to process Zabbix Makefiles.

4.2 Structure of Zabbix distribution

• src

The directory contains sources for all Zabbix processes except frontends.

• src/zabbix_server

The directory contains Makefile and sources for zabbix_server.

• src/zabbix_agent

The directory contains Makefile and sources for zabbix_agent and zabbix_agentd.

• src/zabbix_get

The directory contains Makefile and sources for zabbix_get.

• src/zabbix_sender

The directory contains Makefile and sources for zabbix_sender.

• include

The directory contains Zabbix include files.

• misc
– misc/init.d

The directory contains start-up scripts for different platforms.

• frontends
– frontends/php

The directory contains files of PHP frontend.

• create

The directory contains SQL script for initial database creation.

• create/schema

Database creation schemas.

• create/data

Data for initial database creation.

• upgrades

The directory contains upgrade procedures for different versions of Zabbix.

4.3 Zabbix Server

Server side

Step 1

Create the Zabbix superuser account

This is the user the server will run as. For production use you should create a dedicated unprivileged account (’zabbix’ is commonly
used). Running Zabbix as ’root’,’bin’, or any other account with special rights is a security risk. Do not do it!

Note:
Zabbix server process (zabbix_server) is protected from being run under root account.

If Zabbix server and agent are run on the same machine it is recommended to use a different user for running the server than for
running the agent. Otherwise, if both are run as the same user, the agent can access the server configuration file and any Admin
level user in Zabbix can quite easily retrieve, for example, the database password.

Step 2

Extract Zabbix sources

65

shell> tar -zxf zabbix-1.8.tar.gz

Step 3

Create the Zabbix database

Zabbix comes with SQL scripts used to create the required database schema and also to insert a default configuration. There are
separate scripts for IBM DB2, MySQL, Oracle, PostgreSQL and SQLite.

For IBM DB2:

shell> db2 "create database zabbix using codeset utf-8 territory us pagesize 32768"
shell> cd create/schema
shell> db2batch -d zabbix -f ibm_db2.sql
shell> cd ../data
shell> db2batch -d zabbix -f data.sql
shell> db2batch -d zabbix -f images_ibm_db2.sql

Zabbix frontend uses OFFSET and LIMIT clauses in SQL queries. For this to work, IBMDB2 servermust have DB2_COMPATIBILITY_VECTOR
variable be set to 3. Run the following command before starting the database server:

shell> db2set DB2_COMPATIBILITY_VECTOR=3

For MySQL:

shell> mysql -u<username> -p<password>
mysql> create database zabbix character set utf8;
mysql> quit;
shell> cd create/schema
shell> cat mysql.sql | mysql -u<username> -p<password> zabbix
shell> cd ../data
shell> cat data.sql | mysql -u<username> -p<password> zabbix
shell> cat images_mysql.sql | mysql -u<username> -p<password> zabbix

For Oracle (we assume that user zabbix with password password exists and has permissions to create database objects in service
ORCL):

shell> cd create

Copy directory data/images somewhere on oracle server, e. g. /home/oracle:

shell> scp -r data/images user@host:/home/oracle

Edit file data/images_oracle.sql and set images_dir variable to ”/home/oracle/images”:

CREATE OR REPLACE DIRECTORY image_dir AS '/home/oracle/images'

Proceed with importing data:

shell> sqlplus zabbix/password@host/ORCL
sqlplus> set def off
sqlplus> @schema/oracle.sql
sqlplus> @data/data.sql
sqlplus> @data/images_oracle.sql
sqlplus> exit

Note:
Zabbix requires UTF8 database character set. If database is not UTF8 it can be converted by running: ALTER DATABASE
NATIONAL CHARACTER SET UTF8;

For PostgreSQL:

shell> psql -U <username>
psql> create database zabbix;
psql> \q
shell> cd create/schema
shell> cat postgresql.sql | psql -U <username> zabbix
shell> cd ../data
shell> cat data.sql | psql -U <username> zabbix
shell> cat images_pgsql.sql | psql -U <username> zabbix

For SQLite:

66

shell> cd create/schema
shell> cat sqlite.sql | sqlite3 /var/lib/sqlite/zabbix.db
shell> cd ../data
shell> cat data.sql | sqlite3 /var/lib/sqlite/zabbix.db
shell> cat images_sqlite3.sql | sqlite3 /var/lib/sqlite/zabbix.db

Step 4

Configure and compile the source code for your system

The sources must be compiled for both the server (monitoring machine) as well as the clients (monitored machines). To configure
the source for the server, you must specify which database will be used.

shell> ./configure --enable-server --with-ibm-db2 --with-net-snmp --with-jabber --with-libcurl # for IBM DB2 + Jabber + WEB monitoring

or

shell> ./configure --enable-server --with-mysql --with-net-snmp --with-jabber --with-libcurl # for MySQL + Jabber + WEB monitoring

or

shell> ./configure --enable-server --with-oracle --with-net-snmp --with-jabber --with-libcurl # for Oracle + Jabber + WEB monitoring

or

shell> ./configure --enable-server --with-pgsql --with-net-snmp --with-jabber --with-libcurl # for PostgreSQL + Jabber + WEB monitoring

or

shell> ./configure --enable-server --with-sqlite3 --with-net-snmp --with-jabber --with-libcurl # for SQLite3 + Jabber + WEB monitoring

Note:
Use flag --with-ibm-db2 to specify location of the CLI API.
Use flag --with-oracle to specify location of the OCI API.

Note:
Flag --with-ucd-snmp can be used instead of --with-net-snmp. If no SNMP support is required, both --with-net-snmp and
--with-ucd-snmp may be skipped.

However, if you want to compile client binaries along with server binaries, run:

shell> ./configure --enable-server --enable-agent --with-mysql --with-net-snmp --with-jabber --with-libcurl

Note:
Use flag --enable-static to statically link libraries. If you plan to distribute compiled binaries among different servers, you
must use this flag to make these binaries work without required libraries. Note that --enable-static does not work under
Solaris.

Step 5

Make and install everything

shell> make install

By default, make install will install all the files in /usr/local/sbin, /usr/local/lib etc. Make sure that you have enough permissions.

You can specify an installation prefix other than /usr/local using --prefix, for example --prefix=/home/zabbix. In this case daemon
binaries will be installed under <prefix>/sbin, while utilities under <prefix>/bin. Man pages will be installed under <prefix>/share.

Step 6

Configure /etc/services

The step is optional. However, it is recommended. On the client (monitored) machines, add the following lines to /etc/services:

zabbix-agent 10050/tcp Zabbix Agent
zabbix-agent 10050/udp Zabbix Agent
zabbix-trapper 10051/tcp Zabbix Trapper
zabbix-trapper 10051/udp Zabbix Trapper

Note that the port numbers are official Zabbix ports registered in IANA.

Step 7

67

http://blogs.sun.com/rie/entry/static_linking_where_did_it
http://blogs.sun.com/rie/entry/static_linking_where_did_it

Configure /etc/inetd.conf

If you plan to use zabbix_agent instead of the recommended zabbix_agentd, the following line must be added:

zabbix_agent stream tcp nowait.3600 zabbix /opt/zabbix/bin/zabbix_agent

Restart inetd

shell> killall -HUP inetd

Modify default settings in configuration files

Step 8

Create a location to hold configuration files:

mkdir /etc/zabbix

Step 9

Configure /etc/zabbix/zabbix_agentd.conf

You need to configure this file for every host with zabbix_agentd installed. The file should contain the IP address of the Zabbix
server. Connections from other hosts will be denied. You may take misc/conf/zabbix_agentd.conf as example.

Step 10

Configure /etc/zabbix/zabbix_server.conf

For small installations (up to ten monitored hosts), default parameters are sufficient. However, you should change de-
fault parameters to maximize performance of Zabbix. See section [Performance tuning] for more details. You may take
misc/conf/zabbix_server.conf as example.

Step 11

Run server processes

Run zabbix_server on server side.

shell> cd sbin
shell> ./zabbix_server

Step 12

Run agents

Run zabbix_agentd where necessary.

shell> cd sbin
shell> ./zabbix_agentd

4.4 Zabbix Proxy

Zabbix Proxy is a special process. It is not required to run Zabbix.

Step 1

Create the Zabbix superuser account

This is the user the Proxy will run as. For production use you should create a dedicated unprivileged account (’zabbix’ is commonly
used). Running Zabbix Proxy as ’root’, ’bin’, or any other account with special rights is a security risk. Do not do it!

Note:
Zabbix Proxy process (zabbix_proxy) is protected from being run under root account.

Step 2

Extract Zabbix sources

shell> tar -zxf zabbix-1.8.tar.gz

Step 3

Create the Zabbix database. Optional. ::: noteclassic Zabbix Proxy process will create database automatically on the first run if it
does not exist. It will use existing database otherwise. Database auto-creation is supported for SQLite only. ::: Zabbix comes with
SQL scripts used to create the required database schema. There are separate scripts for IBM DB2, MySQL, Oracle, PostgreSQL and
SQLite.

For IBM DB2:

68

shell> db2 "create database zabbix using codeset utf-8 territory us pagesize 32768"
shell> cd create/schema
shell> db2batch -d zabbix -f ibm_db2.sql

For MySQL:

shell> mysql -u<username> -p<password>
mysql> create database zabbix character set utf8;
mysql> quit;
shell> cd create/schema
shell> cat mysql.sql | mysql -u<username> -p<password> zabbix

For Oracle (we assume that user ’zabbix’ with password ’password’ exists and has permissions to create database objects):

shell> cd create/schema
shell> cat oracle.sql | sqlplus zabbix/password >out.log

Note:
Check file out.log for any error messages. Zabbix requires UTF8 database character set. If database is not UTF8 it can be
converted by running: ALTER DATABASE NATIONAL CHARACTER SET UTF8;

For PostgreSQL:

shell> psql -U <username>
psql> create database zabbix;
psql> \q
shell> cd create/schema
shell> cat postgresql.sql | psql -U <username> zabbix

For SQLite:

shell> cd create/schema
shell> cat sqlite.sql | sqlite3 /var/lib/sqlite/zabbix.db

Note:
The database will be automatically created if it does not exist.

Step 4

Configure and compile the source code for your system

The sources must be compiled to enable compilation of Zabbix Proxy process. To configure the source for the Proxy, you must
specify which database will be used.

shell> ./configure --enable-proxy --with-ibm-db2 --with-net-snmp # for IBM DB2 + SNMP monitoring

or

shell> ./configure --enable-proxy --with-mysql --with-net-snmp # for MySQL + SNMP monitoring

or

shell> ./configure --enable-proxy --with-oracle --with-net-snmp # for Oracle + SNMP monitoring

or

shell> ./configure --enable-proxy --with-pgsql --with-net-snmp # for PostgreSQL + SNMP monitoring

or

shell> ./configure --enable-proxy --with-sqlite3 --with-net-snmp # for SQLite3 + SNMP monitoring

Note:
Use flag --with-ibm-db2 to specify location of the CLI API.
Use flag --with-oracle to specify location of the OCI API.

69

Note:
Use flag --enable-static to statically link libraries. If you plan to distribute compiled binaries among different hosts, you
must use this flag to make these binaries work without required libraries. --enable-static does not work under Solaris.
Flag --with-ucd-snmp can be used instead of --with-net-snmp. If no SNMP support required, both --with-net-snmp and
--with-ucd-snmp may be skipped.

However, if you want to compile client binaries along with proxy binaries, run:

shell> ./configure --enable-proxy --enable-agent --with-mysql --with-net-snmp

Parameter --enable-static may be used to force static linkage.

Step 5

Make and install everything

shell> make install

By default, make install will install all the files in /usr/local/sbin, /usr/local/lib etc. You can specify an installation prefix other than
/usr/local using --prefix

Step 6

Configure /etc/services

The step is optional. However, it is recommended. On the client (monitored) machines, add the following lines to /etc/services:

zabbix_agent 10050/tcp
zabbix_trap 10051/tcp

Step 7

Configure /etc/inetd.conf

If you plan to use zabbix_agent instead of the recommended zabbix_agentd, the following line must be added:

zabbix_agent stream tcp nowait.3600 zabbix /opt/zabbix/bin/zabbix_agent

Restart inetd

shell> killall -HUP inetd

Step 8

Create a location to hold configuration files:

mkdir /etc/zabbix

Configure /etc/zabbix/zabbix_proxy.conf

For small installations (up to ten monitored hosts), default parameters are sufficient. However, you should change default param-
eters to maximize performance of Zabbix Proxy. Make sure you have correct Hostname and Server parameters set. You may take
misc/conf/zabbix_proxy.conf as example.

Step 9

Run Proxy processes

Run zabbix_proxy:

shell> cd sbin
shell> ./zabbix_proxy

4.5 Zabbix Agent

Client side

Step 1

Create the Zabbix account

This is the user the agent will run as. For production use you should create a dedicated unprivileged account (“zabbix” is commonly
used). Zabbix agents have protection against running under root account.

Step 2

Extract Zabbix sources

shell> tar -zxf zabbix-1.8.tar.gz

70

Step 3

Configure and compile the source code for your system

The sources must be compiled for the client only.

To configure the source for the client:

shell> ./configure --enable-agent

Note:
Use flag --enable-static to statically link libraries. If you plan to distribute compiled binaries among different hosts, you
must use this flag to make these binaries work without required libraries.

Step 4

Build agent

shell> make

Copy created binaries from bin/ to /opt/zabbix/bin or any other directory. Other common directories are /usr/local/bin or
/usr/local/zabbix/bin.

Step 5

Configure /etc/services

The step is not real requirement. However, it is recommended.

On the client (monitored) machines, add the following lines to /etc/services:

zabbix_agent 10050/tcp
zabbix_trap 10051/tcp

Step 6

Configure /etc/inetd.conf

If you plan to use zabbix_agent instead of the recommended zabbix_agentd, the following line must be added:

zabbix_agent stream tcp nowait.3600 zabbix /opt/zabbix/bin/zabbix_agent

Restart inetd

shell> killall -HUP inetd

Step 7

Create a location to hold configuration files:

mkdir /etc/zabbix

Step 8

Configure /etc/zabbix/zabbix_agentd.conf

You need to configure this file for every host with zabbix_agentd installed. The file should contain IP address of Zabbix server.
Connections from other hosts will be denied. You may take misc/conf/zabbix_agentd.conf as example.

Step 9

Run zabbix_agentd on all monitored machines

shell> /opt/zabbix/bin/zabbix_agentd

Note:
You should not run zabbix_agentd if you have chosen to use zabbix_agent!

Note:
Make sure that your system allows allocation of 2MB of shared memory, otherwise the agent may not start and you will
see ”Can’t allocate shared memory for collector.” in agent’s log file. This may happen on Solaris 8.

4.6 Zabbix WEB Interface

Step 0

71

Zabbix frontend is written in PHP, so to run it a PHP supported webserver is needed. Installation is done by simply copying the PHP
files into the webserver HTML documents directory. It is suggested to use a subdirectory instead of HTML root.

Common locations of the HTML documents directory for Apache web server include:

• /usr/local/apache2/htdocs (default directory when installing Apache from source)
• /srv/www/htdocs (OpenSUSE, SLES)
• /var/www/html (Fedora, RHEL, CentOS)
• /var/www (Debian, Ubuntu)

To create a subdirectory and copy Zabbix frontend files into it, execute the following commands, replacing <htdocs> with the
correct path in your case:

mkdir <htdocs>/zabbix
cd frontends/php
cp -a . <htdocs>/zabbix

Attention:
When upgrading you simply replace the content of <htdocs>/zabbix with the new files copied over from frontends/php, in
this step.

Step 1

Point your browser to Zabbix URL.

Step 2

Read and accept GPL v2.

72

Step 3

Make sure that all software pre-requisites are met.

Pre-requisite Minimum value Description

PHP version 5.0
PHP Memory limit 8MB In php.ini:

memory_limit = 128M
PHP post max size 8MB In php.ini:

post_max_size = 16M
PHP max execution time 300 seconds In php.ini:

max_execution_time = 300

73

Pre-requisite Minimum value Description

PHP max input time 300 seconds In php.ini:
max_input_time = 300

PHP database support One of: IBM DB2, MySQL, Oracle,
PostgreSQL, SQLite

One of the following modules must
be installed:
ibm_db2, php-mysql, oci8,
php-pgsql, php-sqlite3

**PHP BC math ** Any Compiled in or separate module
php-bcmath.

PHP multibyte support Any Compiled in or separate module
php-mbstring.

GD Version 2.0 or higher Module php-gd.
Image formats At least PNG Module php-gd.

Step 4

Configure database settings. Zabbix database must already be created.

Step 5

Enter Zabbix Server details.

74

Step 6

See summary of settings.

Step 7

Download configuration file and place it under conf/.

75

Step 8

Finishing installation.

76

77

Step 9

For distributed monitoring only!

If used in a distributed environment you have to run only once:

shell> ./zabbix_server -n <nodeid>

where Node ID is an unique Node identificator. For example:

shell> ./zabbix_server -n 1

This will convert database data for use with Node ID ’1’ and also adds a local node.

Step 10

Zabbix frontend is ready! Default user name is Admin, password zabbix.

78

5 Upgrading

5.1 Change level releases

For change level releases only upgrading of server binary and frontend is required. If mentioned in release notes, optional indexes
may be added to the database to improve performance. Upgrading can be easily performed over several versions, for example,
upgrading from 1.8.1 to 1.8.3 can be performed in single step.

See installation and upgrade notes for more information.

6 Using Zabbix appliance

As an alternative to setting up manually or reusing existing server for Zabbix, users may download Zabbix appliance.

To get started, boot the appliance and point your browser at the IP it has received over DHCP.

|<| |<| |-|

Zabbix appliance versions are based upon the following OpenSUSE versions:

Zabbix appliance version OpenSUSE version

1.8.2 11.2
1.8.3
1.8.4 11.3
1.8.5
1.8.6
1.8.7 11.4
1.8.8

79

Zabbix appliance version OpenSUSE version

1.8.9
1.8.10
1.8.11
1.8.12

It is available in the following formats:

• vmdk (VMWare/Virtualbox);
• OVF (Open Virtualisation Format);
• CD iso;
• HDD/flash image;
• Preload ISO;
• Xen guest.

It has Zabbix server configured and running on MySQL, as well as frontend available.

The appliance has been built using SUSE Studio.

6.1 Changes to SUSE configuration

There are some changed applied to the base OpenSUSE configuration.

6.1.1 MySQL configuration changes

• Binary log is disabled;
• InnoDB is configured to store data for each table in a separate file.

6.1.2 Using a static IP address

By default the appliance uses DHCP to obtain IP address. To specify a static IP address:

• Log in as root user;
• Open file /etc/sysconfig/network/ifcfg-eth0 in your favourite editor;
• Set BOOTPROTO variable to static;
• Set IPADDR, NETMASK and any other parameters as required for your network;
• Create file /etc/sysconfig/network/routes. For the default route, use default 192.168.1.1 - - (replacing with your gateway
address).

• Run the command rcnetwork restart.

To configure DNS, add nameserver entries in /etc/resolv.conf, specifying each nameserver on its own line: nameserver
192.168.1.2.

Alternatively, just use yast configuration utility to update network settings.

6.1.3 Changing time zone

By default the appliance uses UTC for the system clock. To change the time zone, copy appropriate file from /usr/share/zoneinfo
to /etc/localtime, for example:

cp /usr/share/zoneinfo/Europe/Riga /etc/localtime

6.1.4 Other changes

• Network is configured to use DHCP to obtain IP address;
• Utility fping is set to have permissions 4710 and is owned by group zabbix - suid and only alowed to be used by zabbix
group;

• ntpd configured to synchronise to the public pool servers;
• Various basic utilities have been added that could make working with Zabbix and monitoring in general easier.

6.2 Zabbix configuration

Appliance Zabbix setup has the following passwords and other configuration changes:

6.2.1 Passwords

System:

• root:zabbix
• zabbix:zabbix

Database:

• root:zabbix

80

http://blog.susestudio.com/2010/10/new-preload-iso-build-format.html
http://susestudio.com

• zabbix:zabbix

Zabbix frontend:

• admin:zabbix

Attention:
If you change frontend password, do not forget to update password setting web monitoring (Configuration → WEB).

To change the database user password it has to be changed in the following locations:

• MySQL;
• zabbix_server.conf;
• zabbix.conf.php.

6.2.2 File locations

• Configuration files are placed in /etc/zabbix.
• Zabbix logfiles are placed in /var/log/zabbix.
• Zabbix frontend is placed in /usr/share/zabbix.
• Home directory for user zabbix is /var/lib/zabbix.

6.2.3 Changes to Zabbix configuration

• Some items and triggers in the default Linux template are disabled (mostly those who did not correspond to appliance setup);
• Server name for Zabbix frontend set to ”Zabbix 1.8 Appliance”;
• Frontend timezone is set to Europe/Riga, Zabbix home (this can be modified in /etc/php5/apache2/php.ini);
• Disabled triggers and web scenarios are shown by default to reduce confusion.

6.2.4 Preserving configuration

If you are running live CD version of the appliance or for some other reason can’t have persistent storage, you can create a backup
of whole database, including all configuration and gathered data.

To create the backup, run:

mysqldump zabbix | bzip2 -9 > dbdump.bz2

Now you can transfer file dbdump.bz2 to another machine.

To restore from the backup, transfer it to the appliance and execute:

bzcat dbdump.bz2 | mysql zabbix

Attention:
Make sure that Zabbix server is stopped while performing the restore.

6.3 Frontend access

Access to frontend by default is allowed from:

• 127.0.0.1
• 192.168.0.0/16
• 10.0.0.0/8
• ::1

Root (/) is redirected to /zabbix on the webserver, thus frontend can be accessed both as http://<host> and http://<host>/zabbix.

This can be customised in /etc/apache2/conf.d/zabbix.conf. You have to restart webserver after modifying this file. To do so,
log in using SSH as root user and execute:

service apache2 restart

6.4 Firewall

By default, only two ports are open - 22 (SSH) and 80 (HTTP). To open additional ports - for example, Zabbix server and agent ports
- modify iptables rules with SuSEfirewall2 utility:

SuSEfirewall2 open EXT TCP zabbix-trapper zabbix-agent

Then reload the firewall rules:

SuSEfirewall2 stop
SuSEfirewall2 start

81

6.5 Monitoring capabilities

Zabbix server is compiled with support for the following:

• SNMP;
• IPMI;
• Web monitoring;
• SSH2;
• IPv6.

In the provided configuration Zabbix server itself is monitored with the help of locally installed agent for some base parameters,
additionally Zabbix frontend is monitored as well using web monitoring.

|<| |<| |-|

Note:
Note that web frontend monitoring logs in - this can add lots of entries to the audit log.

6.6 Naming, init and other scripts

Zabbix daemons have their names changed from standard with underscore to dash to conform to SUSE guidelines. They are called:

• zabbix-agentd
• zabbix-server

In a similar fashion, configuration files are:

• /etc/zabbix/zabbix-server.conf
• /etc/zabbix/zabbix-agentd.conf

Appropriate init scripts are provided. To control Zabbix server, use any of these:

service zabbix-server status
rczabbix-server status
/etc/init.d/zabbix-server status

Replace server with agentd for Zabbix agent daemon.

6.6.1 Scheduled scripts

There is a scheduled script, run from the crontab every 10minutes that restarts Zabbix server if it is not running, /var/lib/zabbix/bin.
It logs timestamped problems and starting attempts at /var/log/zabbix/server_problems.log. This script is available since
Zabbix Appliance version 1.8.3.

Attention:
Make sure to disable this crontab entry if stopping of Zabbix server is desired.

6.6.2 Increasing available diskspace

Warning:
Create a backup of all data before attempting any of the steps.

Available diskspace on the appliance might not be sufficient. In that case it is possible to expand the disk. To do so, first expand
the block device in your virtualisation environment, then follow these steps.

Start fdisk to change the partition size. As root, execute:

fdisk /dev/sda

This will start fdisk on disk sda. Next, switch to sectors by issuing:

u

Attention:
Don’t disable DOS compatibility mode by entering c. Proceeding with it disabled will damage the partition.

Then delete the existing partition and create new one with desired size. In majority of cases you will accept the available maximum,
which will expand the filesystem to whatever size you made available for the virtual disk. To do so, enter the following sequence
in fdisk prompt:

82

d
n
p
1
(accept default 63)
(accept default max)

If you wish to leave some space for additional partitions (swap etc), you can enter another value for last sector. When done, save
the changes by issuing:

w

Reboot the virtual machine (as the partition we modified is in use currently). After reboot, filesystem resizing can take place.

resize2fs /dev/sda1

That’s it, filesystem should be grown to the partition size now.

6.7 Format-specific notes

6.7.1 Xen

To use images in Xen server, run:

xm create -c file-with-suffix.xenconfig

See the following pages for more information on using Xen images:

• http://en.opensuse.org/openSUSE:How_to_use_downloaded_SUSE_Studio_appliances#Using_Xen_guests
• http://old-en.opensuse.org/SUSE_Studio_Xen_Howtos

Converting image for XenServer

To use Xen images with Citrix Xenserver you have to convert the disk image. To do so:

• Create a virtual disk which is at least as large as the image
• Find out the UUID for this disk

xe vdi-list params=all

• If there are lots of disks, they can be filtered by name parameter name-label, as assigned when creating the virtual disk
• Import the image

xe vdi-import filename="image.raw" uuid="<UUID>"

Instructions from Brian Radford blog.

6.7.2 VMWare

The images in vmdk format are usable directly in VMWare Player, Server and Workstation products. For use in ESX, ESXi and
vSphere they must be converted using VMWare converter.

6.7.3 HDD/flash image (raw)

See http://en.opensuse.org/openSUSE:SUSE_Studio_Disc_Image_Howtos for more information on disk images.

6.8 Known issues

6.8.1 For appliance 1.8.8

Zabbix appliance 1.8.8 reports itself as being based on 1.8.7 in the boot messages. This is incorrect, actual appliance contains
Zabbix 1.8.8.

3 Zabbix Processes

1 Logging For logging configuration of Zabbix daemons ”LogFile” configuration parameter is used. If this parameter is left
empty (LogFile=), syslog logging facilities are used. All Zabbix daemons on Unix-like platforms log their messages from ”Daemon”
environment. The mapping between Zabbix logging levels and syslog levels is as follows:

Zabbix log level syslog log level Comments

0 - empty
(LOG_LEVEL_EMPTY)

syslog is not used. All messages are
skipped.

83

http://en.opensuse.org/openSUSE:How_to_use_downloaded_SUSE_Studio_appliances#Using_Xen_guests
http://old-en.opensuse.org/SUSE_Studio_Xen_Howtos
http://radfordbw.squidpower.com/2009/10/16/convert-xen-oss-hypervisor-to-xenserver/
http://www.vmware.com/products/converter/
http://en.opensuse.org/openSUSE:SUSE_Studio_Disc_Image_Howtos

Zabbix log level syslog log level Comments

1 - critical information
(LOG_LEVEL_CRIT)

critical conditions
(LOG_CRIT)

2 - error information
(LOG_LEVEL_ERR)

error conditions
(LOG_ERR)

3 - warnings
(LOG_LEVEL_WARNING)

warning conditions
(LOG_WARNING)

4 - for debugging
(LOG_LEVEL_DEBUG)

debug-level messages
(LOG_DEBUG)

For syslog configuration consult the corresponding literature.

Zabbix agent under Windows uses Event Log if ”LogFile” configuration parameter is provided empty. Mapping between Zabbix log
levels (messages of corresponding type) and Windows Event Log entries type is provided below:

Zabbix log level Windows Event Log entry type Comments

0 - empty
(LOG_LEVEL_EMPTY)

Event Log is not used. All messages are
skipped.

1 - critical information
(LOG_LEVEL_CRIT)
2 - error information
(LOG_LEVEL_ERR)

EVENTLOG_ERROR_TYPE Error

3 - warnings
(LOG_LEVEL_WARNING)

EVENTLOG_WARNING_TYPE Warning

4 - for debugging
(LOG_LEVEL_DEBUG)

EVENTLOG_INFORMATION_TYPE Information

2 Individual processes zabbix_server zabbix_proxy zabbix_agentd zabbix_agent zabbix_agentd_win zabbix_sender zabbix_get

1 Zabbix Server

Zabbix server is the central process of Zabbix software. Zabbix server can be started by executing:

shell> cd sbin
shell> ./zabbix_server

Zabbix server runs as a daemon process.

Zabbix server accepts the following command line parameters:

-c --config <file> absolute path to the configuration file (default is /etc/zabbix/zabbix_server.conf)
-n --new-nodeid <nodeid> convert database data to new nodeid
-R --runtime-control <option> perform administrative functions
-h --help give this help
-V --version display version number

Note:
-R or --runtime-control option is supported since Zabbix 1.8.6.
Runtime control is not supported on OpenBSD and NetBSD.

In order to get more help run:

shell> zabbix_server -h

Example of command line parameters:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf
shell> zabbix_server --help
shell> zabbix_server -V

84

Runtime control Runtime control options:

Option Description

config_cache_reload Reload configuration cache. Ignored if cache is being currently loaded.

Example of using runtime control to reload the server configuration cache:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R config_cache_reload

Configuration file The configuration file contains parameters for zabbix_server. The file must exist and it should have read
permissions for user ’zabbix’. Supported parameters:

Parameter Mandatory Range Default Description

AlertScriptsPath no /home/zabbix/bin/ Location of custom alert
scripts

CacheSize no 128K-1G 8M Size of configuration cache,
in bytes.
Shared memory size for
storing hosts and items data.

CacheUpdateFrequency no 1-3600 60 How often Zabbix will
perform update of
configuration cache, in
seconds.

DBHost no Based on the
underlying library
implementation
used.

Database host name.
If set to localhost, socket is
used for MySQL.

DBName yes Database name.
For SQLite3 path to database
file must be provided.
DBUser and DBPassword are
ignored.

DBPassword no Database password. Ignored
for SQLite.
Comment this line if no
password is used.

DBPort no 1024-65535 3306 Database port when not
using local socket. Ignored
for SQLite.

DBSocket no /tmp/mysql.sock Path to MySQL socket.
DBUser no Database user. Ignored for

SQLite.
DebugLevel no 0-4 3 Specifies debug level

0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

DisableHousekeeping no 0-1 0 If set to 1, disables
housekeeping.

ExternalScripts no /etc/zabbix/externalscriptsLocation of external scripts
Fping6Location no /usr/sbin/fping6 Location of fping6.

Make sure that fping6 binary
has root ownership and SUID
flag set.
Make empty
(”Fping6Location=”) if your
fping utility is capable to
process IPv6 addresses.

85

Parameter Mandatory Range Default Description

FpingLocation no /usr/sbin/fping Location of fping.
Make sure that fping binary
has root ownership and SUID
flag set!

HistoryCacheSize no 128K-1G 8M Size of history cache, in
bytes.
Shared memory size for
storing history data.

HistoryTextCacheSize no 128K-1G 16M Size of text history cache, in
bytes.
Shared memory size for
storing character, text or log
history data.

HousekeepingFrequency no 1-24 1 How often Zabbix will
perform housekeeping
procedure (in hours).
Housekeeping is removing
unnecessary information
from history, alert, and
alarms tables.
Note: To prevent
housekeeper from being
overloaded (for example,
when history and trend
periods are greatly reduced),
no more than
4xHousekeepingFrequency
hours of outdated history are
deleted in one housekeeping
cycle, for each item. Thus, if
HousekeepingFrequency is 1,
no more than 4 hours of
outdated history (starting
from the oldest entry) will be
deleted per cycle.

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the trapper
should listen on.
Trapper will listen on all
network interfaces if this
parameter is missing.
Multiple IP addresses are
supported in version 1.8.3
and higher.

ListenPort no 1024-32767 10051 Listen port for trapper.
LogFileSize no 0-1024 1 Maximum size of log file in

MB.
0 - disable automatic log
rotation.

LogFile no Name of log file.

86

Parameter Mandatory Range Default Description

LogSlowQueries no 0-3600000 0 How long a database query
may take before being
logged (in milliseconds).
0 - don’t log slow queries.
This option becomes enabled
starting with DebugLevel=3.
This option is supported
in version 1.8.2 and
higher.

MaxHousekeeperDelete no 0-1000000 500 No more than
’MaxHousekeeperDelete’
rows (corresponding to
[tablename], [field], [value])
will be deleted per one task
in one housekeeping cycle.
SQLite3 does not use this
parameter, deletes all
corresponding rows without a
limit.
If set to 0 then no limit is
used at all. In this case you
must know what you are
doing!
This parameter is supported
since Zabbix 1.8.2 and
applies only to deleting
history and trends of already
deleted items.

NodeID no 0-999 0 Unique NodeID in distributed
setup.
0 - standalone server

NodeNoEvents no 0-1 0 If set to ’1’ local events won’t
be sent to master node.
This won’t impact ability of
this node to propagate
events from its child nodes.

NodeNoHistory no 0-1 0 If set to ’1’ local history won’t
be sent to master node.
This won’t impact ability of
this node to propagate
history from its child nodes.

PidFile no /tmp/zabbix_server.pidName of PID file.
ProxyConfigFrequency no 1-604800 3600 How often Zabbix Server

sends configuration data to a
Zabbix Proxy in seconds.
Used only for proxies in a
passive mode.
This option is supported
in version 1.8.3 and
higher.

ProxyDataFrequency no 1-3600 1 How often Zabbix Server
requests history data from a
Zabbix Proxy in seconds.
Used only for proxies in a
passive mode.
This option is supported
in version 1.8.3 and
higher.

SSHKeyLocation no Location of public and private
keys for SSH checks

87

Parameter Mandatory Range Default Description

SenderFrequency no 5-3600 30 How often Zabbix will try to
send unsent alerts (in
seconds).

SourceIP no Source IP address for
outgoing connections.

StartDBSyncers no 1-100 4 Number of pre-forked
instances of DB Syncers.
The upper limit used to be 64
before version 1.8.5.
This option is supported
in version 1.8.3 and
higher.

StartDiscoverers no 0-250 1 Number of pre-forked
instances of discoverers.
The upper limit used to be
255 before version 1.8.5.

StartHTTPPollers no 0-1000 1 Number of pre-forked
instances of HTTP pollers.
The upper limit used to be
255 before version 1.8.5.

StartIPMIPollers no 0-1000 0 Number of pre-forked
instances of IPMI pollers.
The upper limit used to be
255 before version 1.8.5.

StartPingers no 0-1000 1 Number of pre-forked
instances of ICMP pingers.
The upper limit used to be
255 before version 1.8.5.

StartPollersUnreachable no 0-1000 1 Number of pre-forked
instances of pollers for
unreachable hosts (including
IPMI).
The upper limit used to be
255 before version 1.8.5.
This option is missing in
version 1.8.3.

StartPollers no 0-1000 5 Number of pre-forked
instances of pollers.
The upper limit used to be
255 before version 1.8.5.

StartProxyPollers no 0-250 1 Number of pre-forked
instances of pollers for
passive proxies.
The upper limit used to be
255 before version 1.8.5.
This option is supported
in version 1.8.3 and
higher.

StartTrappers no 0-1000 5 Number of pre-forked
instances of trappers.
The upper limit used to be
255 before version 1.8.5.

Timeout no 1-30 3 Specifies how long we wait
for agent, SNMP device or
external check (in seconds).

TmpDir no /tmp Temporary directory.
TrapperTimeout no 1-300 300 Specifies how many seconds

trapper may spend
processing new data.

TrendCacheSize no 128K-1G 4M Size of trend cache, in bytes.
Shared memory size for
storing trends data.

88

Parameter Mandatory Range Default Description

UnavailableDelay no 1-3600 60 How often host is checked for
availability during the
unavailability period, in
seconds.

UnreachableDelay no 1-3600 15 How often host is checked for
availability during the
unreachability period, in
seconds.

UnreachablePeriod no 1-3600 45 After how many seconds of
unreachability treat a host as
unavailable.

Note:
Starting from version 1.8.6 Zabbix Server will not start up if invalid (not following parameter=value notation) or unknown
parameter entry is present in configuration file.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

2 Zabbix Proxy

Zabbix proxy is a process which collects performance and availability data from one or more monitored devices and sends the
information to a Zabbix server. Zabbix proxy can be started by:

shell> cd sbin
shell> ./zabbix_proxy

Zabbix proxy runs as a daemon process.

Zabbix proxy accepts the following command line parameters:

-c --config <file> absolute path to the configuration file
-R --runtime-control <option> perform administrative functions
-h --help give this help
-V --version display version number

Note:
-R or --runtime-control option is supported since Zabbix 1.8.6.
Runtime control is not supported on OpenBSD and NetBSD.

In order to get more help run:

shell> zabbix_proxy -h

Example of command line parameters:

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf
shell> zabbix_proxy --help
shell> zabbix_proxy -V

Runtime control Runtime control options:

Option Description

config_cache_reload Reload configuration cache. Ignored if cache is being currently loaded.
Active Zabbix proxy will connect to the Zabbix server and request
configuration data.

Example of using runtime control to reload the proxy configuration cache:

89

https://en.wikipedia.org/wiki/Byte_order_mark

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R config_cache_reload

Configuration file The configuration file contains parameters for zabbix_proxy. The file must exist and it should have read
permissions for user ’zabbix’. Supported parameters:

Parameter Mandatory Range Default Description

CacheSize no 128K-1G 8M Size of configuration cache,
in bytes.
Shared memory size, for
storing hosts and items data.

ConfigFrequency no 1-604800 3600 How often proxy retrieves
configuration data from
Zabbix Server in seconds.
For a proxy in the passive
mode this parameter will be
ignored.

DBHost no Based on the
underlying library
implementation
used.

Database host name.
If set to localhost, socket is
used for MySQL.

DBName yes Database name.
For SQLite3 path to database
file must be provided.
DBUser and DBPassword are
ignored.

DBPassword no Database password. Ignored
for SQLite.
Comment this line if no
password is used.

DBSocket no 3306 Path to MySQL socket.
Database port when not
using local socket. Ignored
for SQLite.

DBUser Database user. Ignored for
SQLite.

DataSenderFrequency no 1-3600 1 Proxy will send collected data
to the Server every N
seconds.

DebugLevel no 0-4 3 Specifies debug level
0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

DisableHousekeeping no 0-1 0 If set to 1, disables
housekeeping.

ExternalScripts no /etc/zabbix/externalscriptsLocation of external scripts
Fping6Location no /usr/sbin/fping6 Location of fping6.

Make sure that fping6 binary
has root ownership and SUID
flag set.
Make empty
(”Fping6Location=”) if your
fping utility is capable to
process IPv6 addresses.

FpingLocation no /usr/sbin/fping Location of fping.
Make sure that fping binary
has root ownership and SUID
flag set!

90

Parameter Mandatory Range Default Description

HeartbeatFrequency no 0-3600 60 Frequency of heartbeat
messages in seconds.
Used for monitoring
availability of Proxy on server
side.
0 - heartbeat messages
disabled.
For a proxy in the passive
mode this parameter will be
ignored.

HistoryCacheSize no 128K-1G 8M Size of history cache, in
bytes.
Shared memory size for
storing history data.

HistoryTextCacheSize no 128K-1G 16M Size of text history cache, in
bytes.
Shared memory size for
storing character, text or log
history data.

Hostname no Set by
HostnameItem

Unique, case sensitive Proxy
name. Make sure the Proxy
name is known to the server!
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Item used for setting
Hostname if it is undefined
(this will be run on the proxy
similarly as on an agent).
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[].

Ignored if Hostname is set.

This option is supported
in version 1.8.6 and
higher.

91

Parameter Mandatory Range Default Description

HousekeepingFrequency no 1-24 1 How often Zabbix will
perform housekeeping
procedure (in hours).
Housekeeping is removing
unnecessary information
from history, alert, and
alarms tables.
Note: To prevent
housekeeper from being
overloaded (for example,
when history and trend
periods are greatly reduced),
no more than
4xHousekeepingFrequency
hours of outdated history are
deleted in one housekeeping
cycle, for each item. Thus, if
HousekeepingFrequency is 1,
no more than 4 hours of
outdated history (starting
from the oldest entry) will be
deleted per cycle.

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the trapper
should listen on.
Trapper will listen on all
network interfaces if this
parameter is missing.
Multiple IP addresses are
supported in version 1.8.3
and higher.

ListenPort no 1024-32767 10051 Listen port for trapper.
LogFileSize no 0-1024 1 Maximum size of log file in

MB.
0 - disable automatic log
rotation.

LogFile no Name of log file.
If not set, syslog is used.

LogSlowQueries no 0-3600000 0 How long a database query
may take before being
logged (in milliseconds).
0 - don’t log slow queries.
This option becomes enabled
starting with DebugLevel=3.
This option is supported
in version 1.8.2 and
higher.

PidFile no /tmp/zabbix_proxy.pid Name of PID file.
ProxyLocalBuffer no 0-720 0 Proxy will keep data locally

for N hours.
This parameter may be used
if local data will be used by
third party applications.

92

Parameter Mandatory Range Default Description

ProxyMode no 0-1 0 Proxy operating mode.
0 - proxy in the active mode
1 - proxy in the passive mode
This option is supported
in version 1.8.3 and
higher.

ProxyOfflineBuffer no 1-720 1 Proxy will keep data for N
hours in case of no
connectivity with Zabbix
Server.
Older data will be lost.

SSHKeyLocation no Location of public and private
keys for SSH checks

ServerPort no 1024-32767 10051 Port of Zabbix trapper on
Zabbix server.
For a proxy in the passive
mode this parameter will be
ignored.

Server yes IP address (or hostname) of
Zabbix server.
Active Proxy will get
configuration data from the
server.
For a proxy in the passive
mode this parameter will be
ignored.

SourceIP no Source IP address for
outgoing connections.

StartDBSyncers no 1-100 4 Number of pre-forked
instances of DB Syncers.
The upper limit used to be 64
before version 1.8.5.
This option is supported
in version 1.8.3 and
higher.

StartDiscoverers no 0-250 1 Number of pre-forked
instances of discoverers.
The upper limit used to be
255 before version 1.8.5.

StartIPMIPollers no 0-1000 0 Number of pre-forked
instances of IPMI pollers.
The upper limit used to be
255 before version 1.8.5.

StartPingers no 0-1000 1 Number of pre-forked
instances of ICMP pingers.
The upper limit used to be
255 before version 1.8.5.

StartPollersUnreachable no 0-1000 1 Number of pre-forked
instances of pollers for
unreachable hosts (including
IPMI).
The upper limit used to be
255 before version 1.8.5.
This option is missing in
version 1.8.3.

StartPollers no 0-1000 5 Number of pre-forked
instances of pollers.
The upper limit used to be
255 before version 1.8.5.

93

Parameter Mandatory Range Default Description

StartTrappers no 0-1000 5 Number of pre-forked
instances of trappers.
The upper limit used to be
255 before version 1.8.5.

Timeout no 1-30 3 Specifies how long we wait
for agent, SNMP device or
external check (in seconds).

TmpDir no /tmp Temporary directory.
TrapperTimeout no 1-300 300 Specifies how many seconds

trapper may spend
processing new data.

UnavailableDelay no 1-3600 60 How often host is checked for
availability during the
unavailability period, in
seconds.

UnreachableDelay no 1-3600 15 How often host is checked for
availability during the
unreachability period, in
seconds.

UnreachablePeriod no 1-3600 45 After how many seconds of
unreachability treat a host as
unavailable.

Note:
Starting from version 1.8.6 Zabbix Proxy will not start up if invalid (not following parameter=value notation) or unknown
parameter entry is present in configuration file.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

3 Zabbix Agent (UNIX, Standalone daemon)

Zabbix UNIX agent daemon runs on a host being monitored. The agent provides host’s performance and availability information
for Zabbix Server. Zabbix agent processes items of type ’Zabbix agent’ or ’Zabbix agent (active)’.

Zabbix agent can be started by executing:

shell> cd sbin
shell> ./zabbix_agentd

Zabbix agent runs as a daemon process.

Zabbix agent accepts the following command line parameters:

-c --config <file> specify configuration file, default is /etc/zabbix/zabbix_agentd.conf
-h --help give this help
-V --version display version number
-p --print print known items and exit
-t --test <item key> test specified item and exit

In order to get this help run:

shell> zabbix_agentd -h

Example of command line parameters:

shell> zabbix_agentd -c /usr/local/etc/zabbix_agentd.conf
shell> zabbix_agentd --help
shell> zabbix_agentd --print
shell> zabbix_agentd -t "system.cpu.load[all,avg1]"

94

https://en.wikipedia.org/wiki/Byte_order_mark

Configuration file The configuration file contains configuration parameters for zabbix_agentd. The file must exist and it should
have read permissions for user ’zabbix’. Supported parameters:

Parameter Mandatory Range Default Description

Alias no Sets an alias for parameter. It
can be useful to substitute
long and complex parameter
name with a smaller and
simpler one.

Starting from version 1.8.6
Zabbix Agent will not start up
in case incorrectly formatted
Alias entry or duplicate Alias
key is present in
configuration file.

AllowRoot no 0 Allow the agent to run as
’root’. If disabled and the
agent is started by ’root’, the
agent will try to switch to
user ’zabbix’ instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow

BufferSend no 1-3600 5 Do not keep data longer than
N seconds in buffer.

BufferSize no 2-65535 100 Maximum number of values
in a memory buffer. The
agent will send
all collected data to Zabbix
Server or Proxy if the buffer is
full.

DebugLevel no 0-4 3 Specifies debug level
0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

DisableActive no 0 Disable active checks. The
agent will work in passive
mode listening for server.

DisablePassive no 0 Disable passive checks. The
agent will not listen on any
TCP port.
Only active checks will be
processed.
0 - do not disable
1 - disable

EnableRemoteCommands no 0 Whether remote commands
from Zabbix server are
allowed.
0 - not allowed
1 - allowed

95

Parameter Mandatory Range Default Description

Hostname no Set by
HostnameItem

Unique, case sensitive
hostname.
Required for active checks
and must match hostname as
configured on the server.
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Item used for setting
Hostname if it is undefined.
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[] regardless of
EnableRemoteCommands
value.

Ignored if Hostname is set.

This option is supported
in version 1.8.6 and
higher.

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the agent
should listen on.
Multiple IP addresses are
supported in version 1.8.3
and higher.

ListenPort no 1024-32767 10050 Agent will listen on this port
for connections from the
server.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.

LogFile no Name of log file.
If not set, syslog is used.

LogRemoteCommands no 0 Enable logging of executed
shell commands as warnings.
0 - disabled
1 - enabled

96

Parameter Mandatory Range Default Description

MaxLinesPerSecond no 1-1000 100 Maximum number of new
lines the agent will send per
second to Zabbix server
or proxy processing ’log’ and
’eventlog’ active checks.
The provided value will be
overridden by the parameter
’maxlines’,
provided in ’log’ or ’eventlog’
item key.
Note: Zabbix will process 4
times more new lines than
set in MaxLinesPerSecond to
seek the required string in
log items.

PidFile no /tmp/zabbix_agentd.pidName of PID file.
RefreshActiveChecks no 60-3600 120 How often list of active

checks is refreshed, in
seconds.

Server yes List of comma delimited IP
addresses (or hostnames) of
Zabbix servers. No spaces
allowed.
If ServerActive is not
specified, the first entry is
used for receiving list of and
sending active checks.
Note that hostnames must
resolve hostname→IP address
and IP address→hostname.
If IPv6 support is enabled
then ’127.0.0.1’,
’::127.0.0.1’, ’::ffff:127.0.0.1’
are treated equally.

ServerActive no List of comma delimited
IP:port (or hostname:port)
pairs of Zabbix servers for
active checks. No spaces
allowed.
If ServerActive is specified,
first host in the Server option
is not used for active checks,
only for passive checks.
If the port is not specified,
ServerPort port is used for
that host. If ServerPort is not
specified, default port is
used.
IPv6 addresses must be
enclosed in square brackets if
port for that host is specified.
If port is not specified, square
brackets for IPv6 addresses
are optional.
This option is supported
in version 1.8.12 and
higher.

ServerPort no 10051 Server port for retrieving list
of and sending active checks.

SourceIP no Source IP address for
outgoing connections.

97

Parameter Mandatory Range Default Description

StartAgents no 1-100 3 Number of pre-forked
instances of zabbix_agentd
that process passive checks.
The upper limit used to be 16
before version 1.8.5.

Timeout no 1-30 3 Spend no more than Timeout
seconds on processing

UnsafeUserParameters no 0,1 0 Allow all characters to be
passed in arguments to
user-defined parameters.
Supported since Zabbix 1.8.2.

UserParameter no User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,who|wc -l

Starting from version 1.8.6
Zabbix Agent will not start up
in case incorrectly formatted
UserParameter entry or
duplicate UserParameter key
is present in configuration
file.

Note:
Starting from version 1.8.6 Zabbix agent daemon will not start up if invalid (not following parameter=value notation) or
unknown parameter entry is present in configuration file.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

4 Zabbix Agent (UNIX, Inetd version)

The file contains configuration parameters for zabbix_agent. The file must exist and it should have read permissions for user
’zabbix’. Supported parameters:

Parameter Mandatory Default value Description

Alias no Sets an alias for parameter. It
can be useful to substitute
long and complex parameter
name with a smaller and
simpler one.

Starting from version 1.8.6
Zabbix Agent will terminate
in case incorrectly formatted
Alias entry or duplicate Alias
key is present in
configuration file.

98

https://en.wikipedia.org/wiki/Byte_order_mark

Parameter Mandatory Default value Description

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

Server yes - Comma-delimited list of IP
addresses of ZABBIX Servers
or Proxies. Connections from
other IP addresses will be
rejected.

Timeout no 3 Do not spend more than
Timeout seconds on getting
requested value (1-255). The
agent does not kill timeouted
User Parameters processes!

UnsafeUserParameters no 0 Allow all characters to be
passed in arguments to
user-defined parameters

UserParameter no User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,who|wc -l

Starting from version 1.8.6
Zabbix Agent will terminate
in case incorrectly formatted
UserParameter entry or
duplicate UserParameter key
is present in configuration
file.

Note:
Starting from version 1.8.6 Zabbix Agent will terminate if invalid (not following parameter=value notation) or unknown
parameter entry is present in configuration file.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

5 Zabbix Agent (Windows)

Installation

Installation is very simple and includes 3 steps:

Step 1

Create configuration file.

Create configuration file c:/zabbix_agentd.conf in UTF8 encoding without BOM (it has similar syntax as the UNIX agent).

An example configuration file is available in Zabbix source archive as misc/confzabbix_agentd.win.conf.

Step 2

99

https://en.wikipedia.org/wiki/Byte_order_mark

Install agent as a Windows service.

zabbix_agentd.exe --install

If you wish to use configuration file other than c:\zabbix_agentd.conf, you should use the following command for service installation:

zabbix_agentd.exe --config <your_configuration_file> --install

Full path to configuration file should be specified.

Step 3

Run agent.

Now you can use Control Panel to start agent’s service or run:

zabbix_agentd.exe --start

Note:
Windows NT 4.0 note. Zabbix_agentd.exe uses PDH (Performance Data Helper) API to gather various system information,
so PDH.DLL is needed. This DLL is not supplied with Windows NT 4.0, so you need to download and install it by yourself.
Microsoft Knowledge Base article number 284996 describes this in detail and contains a download link. You can find this
article at http://support.microsoft.com/default.aspx?scid=kb;en-us;284996

Usage

Command line syntax:

zabbix_agentd.exe [-Vhp] [-idsx] [-c <file>] [-t <metric>]

Zabbix Windows agent accepts the following command line parameters:

Options:

-c --config <file> Specify alternate configuration file (default is c:\zabbix_agentd.conf).
-h --help Display help information.
-V --version Display version number.
-p --print Print known items and exit.
-t --test <item key> Test single item and exit.

Functions:

-i --install Install Zabbix agent as a service.
-d --uninstall Uninstall Zabbix agent service.
-s --start Start Zabbix agent service.
-x --stop Stop Zabbix agent service.
-m --multiple-agents Service name will include hostname

Configuration file The configuration file (c:/zabbix_agentd.conf) contains configuration parameters for zabbix_agentd.exe. Sup-
ported parameters:

100

http://support.microsoft.com/default.aspx?scid=kb;en-us;284996

Parameter Mandatory Range Default Description

Alias no Sets an alias for parameter. It
can be useful to substitute
long and complex parameter
name with a smaller and
simpler one.
For example, if you wish to
retrieve paging file usage in
percents from the server,
you may use parameter
”perf_counter[\Paging
File(_Total)\% Usage]”, or you
may define an alias by
adding the following line to
configuration file
Alias =
pg_usage:perf_counter[\Paging
File(_Total)\% Usage]
After that you can use
parameter name ”pg_usage”
to retrieve the same
information.
You can specify as many
”Alias” records as you wish.
Aliases cannot be used for
parameters defined in
”PerfCounter” configuration
file records.

Starting from version 1.8.6
Zabbix Agent will not start up
in case incorrectly formatted
Alias entry or duplicate Alias
key is present in
configuration file.

BufferSend no 1-3600 5 Do not keep data longer than
N seconds in buffer.

BufferSize no 2-65535 100 Maximum number of values
in a memory buffer. The
agent will send
all collected data to Zabbix
server or Proxy if the buffer is
full.

DebugLevel no 0-4 3 Specifies debug level
0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

DisableActive no 0 Disable active checks. The
agent will work in passive
mode listening for server.

DisablePassive no 0 Disable passive checks. The
agent will not listen on any
TCP port.
Only active checks will be
processed.
0 - do not disable
1 - disable

101

Parameter Mandatory Range Default Description

EnableRemoteCommands no 0 Whether remote commands
from Zabbix server are
allowed.
0 - not allowed
1 - allowed

Hostname no Set by
HostnameItem

Unique, case sensitive
hostname.
Required for active checks
and must match hostname as
configured on the server.
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Item used for setting
Hostname if it is undefined.
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[] regardless of
EnableRemoteCommands
value.

Ignored if Hostname is set.

This option is supported
in version 1.8.6 and
higher.

Include no You may include individual
file in the configuration file.

ListenIP no 0.0.0.0 List of comma-delimited IP
addresses that the agent
should listen on.
Multiple IP addresses are
supported since Zabbix
1.8.3.

ListenPort no 1024-32767 10050 Agent will listen on this port
for connections from the
server.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.

LogFile no Name of log file.
If not set, Windows Event Log
is used.

LogRemoteCommands no 0 Enable logging of executed
shell commands as warnings.
0 - disabled
1 - enabled

MaxLinesPerSecond no 1-1000 100 Maximum number of new
lines the agent will send per
second to Zabbix Server
or Proxy processing ’log’,
’logrt’ and ’eventlog’ active
checks.
The provided value will be
overridden by the parameter
’maxlines’,
provided in ’log’, ’logrt’ or
’eventlog’ item keys.

102

Parameter Mandatory Range Default Description

PerfCounter no Syntax: <parame-
ter_name>,”<perf_counter_path>”,<period>
Defines new parameter
<parameter_name> which is
an average value for system
performance counter
<perf_counter_path> for the
specified time period
<period> (in seconds).
For example, if you wish to
receive average number of
processor interrupts per
second for last minute, you
can define new parameter
”interrupts” as following:
PerfCounter = inter-
rupts,”\Processor(0)\Interrupts/sec”,60
Please note double quotes
around performance counter
path.
The parameter name
(interrupts) is to be used as
the item key when creating
an item.
Samples for calculating
average value will be taken
every second.
You may run ”typeperf -qx” to
get list of all performance
counters available in
Windows.

Starting from version 1.8.6
Zabbix Agent will not start up
in case incorrectly formatted
PerfCounter entry or
duplicate PerfCounter key is
present in configuration file.

RefreshActiveChecks no 60-3600 120 How often list of active
checks is refreshed, in
seconds.

Server yes List of comma delimited IP
addresses (or hostnames) of
Zabbix servers. No spaces
allowed.
If ServerActive is not
specified, the first entry is
used for receiving list of and
sending active checks.
Note that hostnames must
resolve hostname→IP address
and IP address→hostname.
If IPv6 support is enabled
then ’127.0.0.1’,
’::127.0.0.1’, ’::ffff:127.0.0.1’
are treated equally.

103

Parameter Mandatory Range Default Description

ServerActive no List of comma delimited
IP:port (or hostname:port)
pairs of Zabbix servers for
active checks. No spaces
allowed.
If ServerActive is specified,
first host in the Server option
is not used for active checks,
only for passive checks.
If the port is not specified,
ServerPort port is used for
that host. If ServerPort is not
specified, default port is
used.
IPv6 addresses must be
enclosed in square brackets if
port for that host is specified.
If port is not specified, square
brackets for IPv6 addresses
are optional.
This option is supported
in version 1.8.13 and
higher.

ServerPort no 10051 Server port for retrieving list
of and sending active checks.

SourceIP no Source IP address for
outgoing connections.

StartAgents no 1-63 (*) 3 Number of pre-forked
instances of zabbix_agentd
that process passive checks.
The upper limit used to be 16
before version 1.8.5.

Timeout no 1-30 3 Spend no more than Timeout
seconds on processing

UnsafeUserParameters no 0-1 0 Allow all characters to be
passed in arguments to
user-defined parameters.
0 - do not allow
1 - allow

UserParameter User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,echo 1

Starting from version 1.8.6
Zabbix Agent will not start up
in case incorrectly formatted
UserParameter entry or
duplicate UserParameter key
is present in configuration
file.

104

Note:
(*) The number of active servers listed in ServerActive plus the number of pre-forked instances for passive checks specified
in StartAgents must be less than 64.

Note:
Starting from version 1.8.6 Zabbix agent will not start up if invalid (not following parameter=value notation) or unknown
parameter entry is present in configuration file.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

6 Zabbix Sender (UNIX)

Zabbix UNIX Sender is a command line utility which may be used to send performance data to Zabbix server for processing.

The utility is usually used in long running user scripts for periodical sending of availability and performance data. Zabbix Sender
can be started by executing:

shell> cd bin
shell> ./zabbix_sender -z zabbix -s "Linux DB3" -k db.connections -o 43

Starting with Zabbix 1.8.2, objects with whitespaces can be passed using zabbix_sender. In this case, these objects must be quoted
using double quotes.

Starting with Zabbix 1.8.4, zabbix_sender has been improved in realtime sending scenarios by gathering multiple values that are
passed to it in close succession, and sending them to the server in single connection. Value that is not further apart from previous
value than 0.2 seconds can be put in the same stack, but maximum pooling time still is 1 second.

If sending many values from an input file, Zabbix sender will batch them at 250 values in one go (all values will be processed), for
example:

zabbix_sender -z 127.0.0.1 -i /tmp/traptest.txt
Info from server: "Processed 250 Failed 0 Total 250 Seconds spent 0.002668"
Info from server: "Processed 50 Failed 0 Total 50 Seconds spent 0.000540"
sent: 300; skipped: 0; total: 300

All entries from an input file are sent in a sequential order top-down.

If the target item has triggers referencing it, all timestamps in an input file must be in an increasing order, otherwise event
calculation will not be correct.

Note:
Starting from version 1.8.6 Zabbix Sender will terminate if invalid (not following parameter=value notation) parameter
entry is present in specified configuration file.

See Zabbix Sender manpage for more information.

7 Zabbix Get (UNIX)

Zabbix get is a process which communicates with Zabbix agent and retrieves required information.

The utility is usually used for troubleshooting of Zabbix agents.

Zabbix get can be started by executing:

shell> cd bin
shell> ./zabbix_get -s 127.0.0.1 -p 10050 -k "system.cpu.load[all,avg1]"

Zabbix get accepts the following command line parameters:

-s --host <host name or IP> Specify host name or IP address of a host.
-p --port <port number> Specify port number of agent running on the host. Default is 10050.

105

https://en.wikipedia.org/wiki/Byte_order_mark

-I --source-address <IP address> Specify source IP address.
-k --key <item key> Specify key of item to retrieve value for.
-h --help Give this help.
-V --version Display version number.

In order to get this help run:

shell> zabbix_get --help

8 Special notes on ”Include” configuration parameter

If an Include parameter is used for including a file, the file must be readable.

If an Include parameter is used for including a directory:

- All files in the directory must be readable.
- No particular order of inclusion should be assumed (e.g. files are not included in alphabetical order). Therefore do not define one parameter in several ''Include'' files (e.g. to override a general setting with a specific one).
- All files in the directory are included into configuration.
- Beware of file backup copies automatically created by some text editors. For example, if editing the ''include/my_specific.conf'' file produces a backup copy ''include/my_specific_conf.BAK'' then both files will be included. Move ''include/my_specific.conf.BAK'' out of the "Include" directory. Check the contents of the ''Include'' directory with a ''ls -al'' command for unnecessary files.

4 Configuration

actions macros applications graphs medias host_templates host_groups host_and_trigger_dependencies items user_parameters
triggers screens_and_slide_shows it_services user_permissions the_queue utilities regexps defines suffixes time_period

1 Actions

Zabbix reacts to events by executing set of operations. An action can be defined for any event or set of events generated by
Zabbix.

Action attributes:

Parameter Description

Name Unique action name.
Event source Source of event.

Currently three sources are supported:
Triggers - events generated by trigger status changes
Discovery - events generated by network discovery module
Auto registration - events generated by new active agents

Enable escalations Enable escalations. If enabled, the action will be escalated
according to operation steps defined for operations.

Period (seconds) Time period for increase of escalation step.
Default subject Default notification subject. The subject may contain macros.
Default message Default notification message. The message may contain macros.
Recovery message If enabled, Zabbix will send a recovery message after the original

problem is resolved. The messages will be sent only to those who
received any message regarding this problem before.

Recovery subject Subject of the recovery message. It may contain macros.
Recovery message Recovery message. It may contain macros.
Status Action status:

Enabled - action is active
Disabled - action is disabled

Warning:
Warning: before enabling recovery messages or escalations, make sure to add ”Trigger value = PROBLEM” condition to
the action, otherwise remedy events can become escalated as well.

106

Action conditions

An action is executed only in case if an event matches defined set of conditions.

The following conditions can be defined for trigger based events:

Condition type Supported operators Description

Application =
like
not like

= - event came from a
trigger, which refers to an
item that is linked to the
specified application
like - event came from a
trigger, which refers to an
item that is linked to an
application, containing the
string
not like - event came from
trigger, which refers to an
item that is linked to an
application not containing
the string

Host group =
<>

Compare against host group
having a trigger which
generated event.
= - event came from this host
group
<> - event did not come from
this host group

Host template =
<>

Compare against Host
Template the trigger belongs
to.
= - event came from a trigger
inherited from this Host
Template
<> - event did not come from
a trigger inherited from this
Host Template

Host =
<>

Compare against Host having
a trigger which generated
event.
= - event came from this Host
<> - event did not come from
this Host

Trigger =
<>

Compare against Trigger
which generated event.
= - event generated by this
Trigger
<> - event generated by
other Trigger

Trigger description (name) like
not like

Compare against Trigger
Name which generated
event.
like - String can be found in
Trigger Name. Case sensitive.
not like - String cannot be
found in Trigger Name. Case
sensitive.
Note: Entered value will be
compared to trigger
description (name) with all
macros expanded.

107

Condition type Supported operators Description

Trigger severity =
<>
>=
<=

Compare with Trigger
Severity. = - equal to trigger
severity
<> - not equal to trigger
severity
>= - more or equal to trigger
severity
<= - less or equal to trigger
severity

Trigger value = Compare with Trigger Value.
= - equal to trigger value (OK
or PROBLEM)

Time period in in Event is within time period.
in - event time matches the
time period.
See Time period specification
page for description of the
format.

Maintenance status =
<>

Check if host is in
maintenance.
= - Host is in maintenance
mode.
<> - Host is not in
maintenance mode.

Trigger value:

Trigger changes status from OK to PROBLEM (trigger value is PROBLEM) Trigger changes status from PROBLEM to OK (trigger value
is OK)

Status change OK→UNKNOWN→PROBLEM is treated as OK→PROBLEM, and PROBLEM→UNKNOWN→OK as PROBLEM→OK.

The following conditions can be defined for Discovery based events:

Condition type Supported operators Description

Host IP =
<>

Check if IP address of a
discovered Host is or is not in
the range of IP addresses.
= - Host IP is in the range
<> - Host IP is out of the
range

Service type =
<>

Check if a discovered service.
= - matches discovered
service
<> - event came from a
different service

Service port =
<>

Check if TCP port number of a
discovered service is or is not
in the range of ports.
= - service port is in the
range
<> - service port is out of the
range

Discovery status = Up - matches Host Up and
Service Up events
Down - matches Host Down
and Service Down events

108

Condition type Supported operators Description

Uptime/Downtime >=
<=

Downtime for Host Down and
Service Down events. Uptime
for Host Up and Service Up
events.
>= - uptime/downtime is
more or equal
<= - uptime/downtime is less
or equal. Parameter is given
in seconds.

Received value =
<>
>=
<=
like
not like

Compare with value received
from an agent (Zabbix,
SNMP). String comparison.
= - equal to the value
<> - not equal to the value
>= - more or equal to the
value
<= - less or equal to the
value
like - has a substring
not like - does not have a
substring. Parameter is given
as a string.

For example this set of conditions (calculation type: AND/OR):

• Host group = Oracle servers
• Host group = MySQL servers
• Trigger name like ’Database is down’
• Trigger name like ’Database is unavailable’

is evaluated as

(Host group = Oracle servers or Host group = MySQL servers) and (Trigger name like ’Database is down’ or Trigger name like
’Database is unavailable’)

Operations

Operation or a set of operations is executed when event matches conditions.

Zabbix supports the following operations:

• Send message
• Remote command(s), including IPMI.

Note:
To successfully receive and read e-mails from Zabbix, e-mail servers/clients must support standard ’SMTP/MIME e-mail’
format since Zabbix sends UTF-8 data. Starting from 1.8.2 the subject and the body of the message are base64-encoded
to follow ’SMTP/MIME e-mail’ format standard.

Note:
Starting with 1.8.3, if the subject contains ASCII characters only, it is not UTF-8 encoded.

Additional operations available for discovery events:

• Add host
• Remove host
• Enable host
• Disable host
• Add to group
• Delete from group
• Link to template
• Unlink from template

109

When adding a host, its name is decided by standard gethostbyname function. If the host can be resolved, resolved name is
used. If not, IP address is used. Besides, if IPv6 address must be used for a host name, then all ”:” (colons) are replaced by ”_”
(underscores), since ”:” (colons) are not allowed in host names.

Attention:
If performing discovery by a proxy, currently hostname lookup still takes place on Zabbix server.

Attention:
If a host exists in Zabbix configuration with the same name as a newly discovered one, versions of Zabbix prior to 1.8 would
add another host with the same name. Zabbix 1.8.1 and later adds _N to the hostname, where N is increasing number,
starting with 2.

Operation attributes:

Parameter Description

Step If escalation is enabled for this action, escalation settings:
From - execute for each step starting from this one
To - till this (0, for all steps starting from From)
Period - increase step number after this period, 0 - use default
period.

Operation type Type of action:
Send message - send message to user
Execute command - execute remote command

Event Source
Send message to Send message to:

Single user - a single user
User group - to all members of a group

Default message If selected, default message will be used.
Subject Subject of the message. The subject may contain macros.
Message The message itself. The message may contain macros.
Remote command List of remote commands.

Attention:
Starting from 1.6.2, Zabbix sends notifications only to those users, which have read permissions to a host (trigger), which
generated the event. At least one host of a trigger expression must be accessible.

Note:
As with some triggers event generation can be defined for every PROBLEM evaluation of the trigger, it is worthy of note
that if escalations are defined for actions on these events, the execution of each new escalation supersedes the previous
escalation, but for at least one escalation step that is always executed on the previous escalation.

Macros for messages and remote commands

The macros can be used for more efficient reporting.

Example 1

Subject:

{TRIGGER.NAME}: {TRIGGER.STATUS}

Message subject will be replaced by something like:

Processor load is too high on server zabbix.zabbix.com: PROBLEM

Example 2

Message:

Processor load is: {zabbix.zabbix.com:system.cpu.load[,avg1].last(0)}

The message will be replaced by something like:

Processor load is: 1.45

110

Example 3

Message:

Latest value: {{HOSTNAME}:{TRIGGER.KEY}.last(0)}
MAX for 15 minutes: {{HOSTNAME}:{TRIGGER.KEY}.max(900)}
MIN for 15 minutes: {{HOSTNAME}:{TRIGGER.KEY}.min(900)}

The message will be replaced by something like:

Latest value: 1.45
MAX for 15 minutes: 2.33
MIN for 15 minutes: 1.01

2 Macros

Zabbix supports number of macros which may be used in various situations. Effective use of macros allows to save time and make
Zabbix configuration more transparent.

List of supported macros

The table contains complete list of macros supported by Zabbix. X means ”supported”.

Item
descrip-
tions

DESCRIPTION

Trigger
names

▼▼

Trigger
expres-
sions

▼▼

Map
labels1

▼▼

Item
key’s
parame-
ters

▼▼

GUI
Scripts

▼▼

Auto reg-
istration
notifica-
tions

▼▼

Discovery
notifica-
tions

▼▼

Notifications
and com-
mands

▼▼

MACRO ▼▼
▼▼ 1 2 3 4 5 6 7 8 9
{DATE} X X X Current

date in
yyyy.mm.dd.
format.

111

{DISCOVERY.DEVICE.IPADDRESS}X IP
address
of the
discov-
ered
device.
Available
always,
does not
depend
on host
being
added.

{DISCOVERY.DEVICE.STATUS}X Status of
the dis-
covered
device:
can be
either
UP or
DOWN.

{DISCOVERY.DEVICE.UPTIME}X Time
since the
last
change
of dis-
covery
status
for a par-
ticular
device.
For ex-
ample:
1h 29m.
For
devices
with
status
DOWN,
this is
the
period of
their
down-
time.

{DISCOVERY.RULE.NAME}X Name of
the dis-
covery
rule that
discov-
ered the
pres-
ence or
absence
of the
device
or
service.

112

{DISCOVERY.SERVICE.NAME}X Name of
the
service
that was
discov-
ered.
For ex-
ample:
HTTP.

{DISCOVERY.SERVICE.PORT}X Port of
the
service
that was
discov-
ered.
For ex-
ample:
80.

{DISCOVERY.SERVICE.STATUS}X Status of
the dis-
covered
service:
can be
either
UP or
DOWN.

{DISCOVERY.SERVICE.UPTIME}X Time
since the
last
change
of dis-
covery
status
for a par-
ticular
service.
For ex-
ample:
1h 29m.
For
services
with
status
DOWN,
this is
the
period of
their
down-
time.

113

{ESC.HISTORY}X Escalation
history.
Log of
previ-
ously
sent
mes-
sages.
Shows
previ-
ously
sent noti-
fications,
on which
escala-
tion step
they
were
sent and
their
status
(sent, in
progress
or
failed).

{EVENT.ACK.HISTORY}X
{EVENT.ACK.STATUS}X
{EVENT.AGE}X X X Age of

the
event.
Useful in
esca-
lated
mes-
sages.

{EVENT.DATE}X X X Date of
the
event.

{EVENT.ID} X X X Numeric
event ID
which
trig-
gered
this
action.

{EVENT.TIME}X X X Time of
the
event.

114

{HOSTNAME<1-
9>}

X X X X X Host
name of
the Nth
item of
the
trigger
which
caused a
notifica-
tion.
Sup-
ported in
auto reg-
istration
notifica-
tions
since
1.8.4.

{HOST.CONN<1-
9>}

X X X X IP and
host
DNS
name de-
pending
on host
settings.

{HOST.DNS<1-
9>}

X X X X Host
DNS
name.

1 2 3 4 5 6 7 8 9
{IPADDRESS<1-
9>}

X X X X IP
address
of the
Nth item
of the
trigger
which
caused a
notifica-
tion.

{ITEM.ID<1-
9>}

X Numeric
ID of the
Nth item
of the
trigger
which
caused a
notifica-
tion.
Sup-
ported
since
1.8.12.

115

{ITEM.LASTVALUE<1-
9>}

X X The
latest
value of
the Nth
item of
the
trigger
expres-
sion
which
caused a
notifica-
tion.
Sup-
ported
from
Zabbix
1.4.3. It
is alias
to
{{HOST-
NAME}:{TRIGGER.KEY}.last(0)}

{ITEM.LOG.AGE<1-
9>}

X

{ITEM.LOG.DATE<1-
9>}

X

{ITEM.LOG.EVENTID<1-
9>}

X

{ITEM.LOG.NSEVERITY<1-
9>}

X

{ITEM.LOG.SEVERITY<1-
9>}

X

{ITEM.LOG.SOURCE<1-
9>}

X

{ITEM.LOG.TIME<1-
9>}

X

{ITEM.NAME<1-
9>}

X Name of
the Nth
item of
the
trigger
which
caused a
notifica-
tion.

116

{ITEM.VALUE<1-
9>}

X X The
latest
value of
Nth item
of the
trigger
expres-
sion if
used for
display-
ing
triggers.
Historical
(when
event
hap-
pened)
value of
Nth item
of the
trigger
expres-
sion if
used for
display-
ing
events
and noti-
fications.
Sup-
ported
from
Zabbix
1.4.3.

{NODE.ID<1-
9>}

X X X

{NODE.NAME<1-
9>}

X X X

1 2 3 4 5 6 7 8 9
{PROFILE.CONTACT<1-
9>}

X Contact
from
host
profile.

{PROFILE.DEVICETYPE<1-
9>}

X Device
type
from of
host
profile.

{PROFILE.HARDWARE<1-
9>}

X Hardware
from
host
profile.

{PROFILE.LOCATION<1-
9>}

X Location
from
host
profile.

{PROFILE.MACADDRESS<1-
9>}

X Mac
Address
from
host
profile.

117

{PROFILE.NAME<1-
9>}

X Name
from
host
profile.

{PROFILE.NOTES<1-
9>}

X Notes
from
host
profile.

{PROFILE.OS<1-
9>}

X OS from
host
profile.

{PROFILE.SERIALNO<1-
9>}

X Serial No
from
host
profile.

{PROFILE.SOFTWARE<1-
9>}

X Software
from
host
profile.

{PROFILE.TAG<1-
9>}

X Tag from
host
profile.

{PROXY.NAME<1-
9>}

X X X Proxy
name of
the Nth
item of
the
trigger
which
caused a
notifica-
tion.
Sup-
ported
since
1.8.4.

{TIME} X X X Current
time in
hh:mm:ss.

{TRIGGER.COMMENT}X Trigger
com-
ment.

118

{TRIGGER.EVENTS.UNACK}X X Number
of unac-
knowl-
edged
events
for a
map
element
in maps,
or for
the
trigger
which
gener-
ated
current
event in
notifica-
tions.
Sup-
ported in
map
element
labels
since
1.8.3.

{TRIGGER.EVENTS.PROBLEM.UNACK}X X Number
of unac-
knowl-
edged
PROB-
LEM
events
for all
triggers
disre-
garding
their
state.
Sup-
ported
since
1.8.3.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.UNACK} X Number
of unac-
knowl-
edged
PROB-
LEM
events
for
triggers
in PROB-
LEM
state.
Sup-
ported
since
1.8.3.

119

{TRIGGER.EVENTS.ACK}X X Number
of
acknowl-
edged
events
for a
map
element
in maps,
or for
the
trigger
which
gener-
ated
current
event in
notifica-
tions.
Sup-
ported
since
1.8.3.

{TRIGGER.EVENTS.PROBLEM.ACK}X X Number
of
acknowl-
edged
PROB-
LEM
events
for all
triggers
disre-
garding
their
state.
Sup-
ported
since
1.8.3.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.ACK} X Number
of
acknowl-
edged
PROB-
LEM
events
for
triggers
in PROB-
LEM
state.
Sup-
ported
since
1.8.3.

1 2 3 4 5 6 7 8 9

120

{TRIGGER.EXPRESSION}X Trigger
expres-
sion.
Sup-
ported
since
1.8.12.

{TRIGGER.ID}X Numeric
trigger
ID which
trig-
gered
this
action.

{TRIGGER.KEY<1-
9>}

X Key of
the Nth
item of
the
trigger
which
caused a
notifica-
tion.

{TRIGGER.NAME}X Name
(descrip-
tion) of
the
trigger.

{TRIGGER.NSEVERITY}X Numerical
trigger
severity.
Possible
values:
0 - Not
classi-
fied, 1 -
Informa-
tion, 2 -
Warning,
3 -
Average,
4 - High,
5 -
Disaster.
Sup-
ported
starting
from
Zabbix
1.6.2.

121

{TRIGGER.SEVERITY}X Trigger
severity.
Possible
values:
Not clas-
sified,
Informa-
tion,
Warning,
Average,
High,
Disaster,
Un-
known

{TRIGGER.STATUS}X Trigger
state.
Can be
either
PROB-
LEM or
OK.
{STA-
TUS} is
depre-
cated.

{TRIGGER.URL}X Trigger
URL.

{TRIGGER.VALUE}X X Current
trigger
value: 0
- trigger
is in OK
state, 1
– trigger
is in
PROB-
LEM
state, 2
– trigger
UN-
KNOWN.
This
macro
can also
be used
in
trigger
expres-
sions.

122

{TRIGGERS.UNACK} X Number
of unac-
knowl-
edged
triggers
for a
map
element,
disre-
garding
trigger
state.
Trigger is
consid-
ered to
be unac-
knowl-
edged if
at least
one of
its PROB-
LEM
events is
unac-
knowl-
edged.

{TRIGGERS.PROBLEM.UNACK} X Number
of unac-
knowl-
edged
PROB-
LEM
triggers
for a
map
element.
Trigger is
consid-
ered to
be unac-
knowl-
edged if
at least
one of
its PROB-
LEM
events is
unac-
knowl-
edged.
Sup-
ported
since
1.8.3.

123

{TRIGGERS.ACK} X Number
of
acknowl-
edged
triggers
for a
map
element,
disre-
garding
trigger
state.
Trigger is
consid-
ered to
be
acknowl-
edged if
all of it’s
PROB-
LEM
events
are
acknowl-
edged.
Sup-
ported
since
1.8.3.

{TRIGGERS.PROBLEM.ACK} X Number
of
acknowl-
edged
PROB-
LEM
triggers
for a
map
element.
Trigger is
consid-
ered to
be
acknowl-
edged if
all of it’s
PROB-
LEM
events
are
acknowl-
edged.
Sup-
ported
since
1.8.3.

124

{host:key.func(param)}X X2 X Simple
macros
as used
in
trigger
expres-
sions.

{$MACRO} X X X X User
macros.
Sup-
ported in
trigger
names
and item
descrip-
tions
since
1.8.4.

1 2 3 4 5 6 7 8 9

Note:
[1] Macros for map labels are supported since 1.8.
[2] Only functions last, avg, max and min with seconds as arguments are supported in map labels.

Macro {TRIGGER.ID} is supported in trigger URL since Zabbix 1.8.8.

User macros

For a greater flexibility, Zabbix supports user macros, which can be defined on global, template and host level. These macros have
a special syntax: {$MACRO}.

The macros can be used in:

• item descriptions (since Zabbix 1.8.4)
• item key parameters
• trigger names (since Zabbix 1.8.4)
• trigger expression parameters and constants (see examples)

The following characters are allowed in the macro names: A-Z , 0-9 , _ , .

Zabbix substitutes macros according to the following precedence:

1. host macros (checked first)
2. macros defined for first level templates of the host (i.e., templates linked directly to the host), sorted by template ID
3. macros defined for second level templates of the host, sorted by template ID
4. macros defined for third level templates of the host, sorted by template ID
5. ...
6. global macros (checked last)

In other words, if a macro does not exist for a host, Zabbix will try to find it in host templates of increasing depth. If still not found,
a global macro will be used, if exists.

If Zabbix is unable to find a macro, the macro will not be substituted.

To define user macros, go to the corresponding locations in the frontend:

• for global macros, visit Administration → General → Macros
• for host and template macros, open host or template properties and look for the Macros block on the right hand side

Note:
If a user macro is used in items or triggers in a template, it is suggested to add that macro to the template even if it is
defined on a global level. That way, exporting the template to XML and importing it in another system will still allow it to
work as expected.

Most common use cases of global and host macros:

125

1. taking advantage of templates with host specific attributes: passwords, port numbers, file names, regular expressions, etc
2. global macros for global one-click configuration changes and fine tuning

Example 1

Use of host macro in item ”Status of SSH daemon” key:

ssh,{$SSH_PORT}

Example 2

Use of host macro in trigger ”CPU load is too high”:

{ca_001:system.cpu.load[,avg1].last(0)}>{$MAX_CPULOAD}

Such a trigger would be created on the template, not edited in individual hosts.

Note:
If you want to use amount of values as the function parameter (for example, max(#3)), include hash mark in the macro
like this: SOME_PERIOD => #3

Example 3

Use of two macros in trigger ”CPU load is too high”:

{ca_001:system.cpu.load[,avg1].min({$CPULOAD_PERIOD})}>{$MAX_CPULOAD}

Note that a macro can be used as a parameter of trigger function, in this example function min().

Attention:
In trigger expressions user macros will expand if referencing a parameter or constant. They will NOT expand if referencing
the host, item key, function, operator or another trigger expression.

Note:
User macros are supported in SNMP OID field since Zabbix 1.8.4.

3 Applications

Application is a set of host items. For example, application ’MySQL Server’ may contain all items which are related to the MySQL
server: availability of MySQL, disk space, processor load, transactions per second, number of slow queries, etc.

An item may be linked with one or more applications.

Applications are used in Zabbix front-end to group items.

Attention:
Currently a host cannot be linked to different templates having same application.

4 Graphs

Custom (user defined) graphs allow the creation of complex graphs.

These graphs, once configured, can be easily accessed via Monitoring→Graphs.

Configuration of custom graphs can be accessed by navigating to Configuration→Templates or Configuration→Hosts and clicking
on Graphs link for corresponding template or host.

Note:
When creating a new graph, first item can be added from any template or host. Then, depending on the choice, further
items can be added :
1. if the first item was from a template, only from that template;
2. if the first item was from any host, from any host (but not from templates anymore)

126

5 Media

A medium is a delivery channel for Zabbix alerts. None, one or more media types can be assigned to user.

Email

Email notification.

Jabber

Notifications using Jabber messaging.

When sending notifications, Zabbix tries to look up a Jabber SRV record first, and if that fails, it uses an address record for that
domain. Among Jabber SRV records, the one with the highest priority and maximum weight is chosen. If it fails, other records are
not tried.

Looking up Jabber SRV records is supported since Zabbix 1.8.6. Prior to that Zabbix only tried an address record.

Script

Custom media scripts are executed from the path defined in the Zabbix server configuration file variable AlertScriptsPath. The
script has three command line variables passed to it:

• Recipient
• Subject
• Message

Environment variables are not preserved or created for the script, so they should be handled explicitly.

GSM Modem

Zabbix supports sending of SMS messages using Serial GSM Modem connected to Zabbix Server’s serial port.

Make sure that:

• Speed of a serial device (normally /dev/ttyS0 under Linux) matches GSM Modem. Zabbix does not set speed of the serial
link. It uses default settings.

• The serial device has read/write access for user zabbix. Run commans ls –l /dev/ttyS0 to see current permission of the serial
device.

• GSM Modem has PIN entered and it preserves it after power reset. Alternatively you may disable PIN on the SIM card. PIN
can be entered by issuing command AT+CPIN=”NNNN” (NNNN is your PIN number, the quotes must present) in a terminal
software, such as Unix minicom or Windows HyperTerminal.

Zabbix has been tested with the following GSM modems:

• Siemens MC35
• Teltonika ModemCOM/G10

6 Host templates

Use of templates is an excellent way of making maintenance of Zabbix much easier.

A template can be linked to a number of hosts. Items, triggers and graphs of the template will be automatically added to the linked
hosts. Change definition of a template item (trigger, graph) and the change will be automatically applied to the hosts.

Host template attributes:

Parameter Description

Name Unique template (host) name. The name must be unique within
ZABBIX Node.

Groups List of host groups the template belongs to.
New group Assign new host group to the template.
Link with template Used to create hierarchical templates.

127

7 Host groups

Host group may have zero, one or more hosts.

Host group attributes:

Parameter Description

Group name Unique host group name. The name must be unique within a
Zabbix node.

Hosts List of hosts of this group.

8 Host and trigger dependencies

Zabbix does not support host dependencies. Host dependencies can be defined using more flexible option, i.e. trigger dependen-
cies.

How it works?

A trigger may have list of one or more triggers it depends on. It means that the trigger will still change its status regardless of
state of the triggers in the list, yet the trigger won’t generate notifications and actions in case if one of the trigger in the list has
state PROBLEM.

Example 1

Host dependency

Suppose you have two hosts: a router and a server. The server is behind the router. So, we want to receive only one notification
if the route is down:

”The router is down”

instead of:

”The router is down” and ”The host is down”

In order to achieve this, we create a trigger dependency:

"The host is down" depends on "The router is down"

In case if both the server and the router is down, Zabbix will not execute actions for trigger ”The host is down”.

10 User Parameters

Functionality of Zabbix agents can be enhanced by defining user parameters (UserParameter configuration parameter) in agent’s
configuration file. Once user parameters are defined, they can be accessed in the same way as any other agent items by using
the key, specified in the parameter definition.

User parameters are commands executed by Zabbix agent. /bin/sh is used as a command line interpreter under UNIX operating
systems.

See a step-by-step tutorial on making use of user parameters.

1 Simple user parameters

In order to define a new parameter for monitoring, one line has to be added to configuration file of Zabbix agent and the agent
must be restarted.

User parameter has the following syntax:

UserParameter=key,command

Parameter Description

Key Unique item key.

128

Parameter Description

Command Command to be executed to evaluate value of the Key.

Example 1

Simple command

UserParameter=ping,echo 1

The agent will always return ’1’ for item with key ’ping’.

Example 2

More complex example

UserParameter=mysql.ping,mysqladmin -uroot ping | grep -c alive

The agent will return ’1’, if MySQL server is alive, ’0’ - otherwise.

2 Flexible user parameters

Flexible user parameters can be used for more control and flexibility.

For flexible user parameters,

UserParameter=key[*],command

Parameter Description

Key Unique item key. The [*] defines that this key accepts parameters.
Command Command to be executed to evaluate value of the Key.

Zabbix parses content of [] and substitutes $1,...,$9 in the
command.
$0 will be substituted by the original command (prior to expansion
of $0,...,$9) to be run.

Note:
To use positional references unaltered, specify double dollar sign - for example, awk ’{print $$2}’.

Attention:
Unless UnsafeUserParameters agent daemon configuration option is enabled, it is not allowed to pass flexible parameters
containing these symbols: \ ’ ” ‘ * ? [] { } ~ $! & ; () < > | # @. Additionally, newline is not allowed either.

Warning:
Command used should always return a value that is not empty (and not a newline). If non-valid value is returned,
ZBX_NOTSUPPORTED will be sent back by the agent.

Example 1

Something very simple

UserParameter=ping[*],echo $1

We may define unlimited number of items for monitoring all having format ping[something].

• ping[0] - will always return ’0’
• ping[aaa] - will always return ’aaa’

Example 2

Let’s add more sense!

UserParameter=mysql.ping[*],mysqladmin -u$1 -p$2 ping | grep -c alive

This parameter can be used for monitoring availability of MySQL database. We can pass user name and password:

mysql.ping[zabbix,our_password]

129

Example 3

How many lines matching a regular expression in a file?

UserParameter=wc[*],grep -c "$2" $1

This parameter can be used to calculate number of lines in a file.

wc[/etc/passwd,root]
wc[/etc/services,zabbix]

Attention:
Note that Zabbix agent daemon does not support user parameters with -t or -p agent switches (used to test single item
or print out a list of all supported items) until version 1.8.3. See manpage in earlier versions for more information.

11 Windows performance counters

Windows performance counter can be effectively monitored using perf_counter[].

For example:

perf_counter["\Processor(0)\Interrupts/sec"]

or

perf_counter["\Processor(0)\Interrupts/sec", 10]

In order to get full list of performance counter available for monitoring you may run:

typeperf -qx

Unfortunately, depending on local settings naming of the performance counters can be different on different Windows servers.
This introduces certain problem when creating a template for monitoring number of Windows machines having different locales.

Every performance counter can be translated into numeric form, which is unique and exactly the same regardless of language
settings.

Run regedit, then find HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib\009. The registry entry
contains information like:

1
1847
2
System
4
Memory
6
% Processor Time
10
File Read Operations/sec
12
File Write Operations/sec
14
File Control Operations/sec
16
File Read Bytes/sec
18
File Write Bytes/sec
....

So, in order to translate string name of a performance counter into numeric form, find corresponding numbers for each part of the
performance counter, like:

System → 2
% Processor Time → 6
\System\% Processor Time

Then use these numbers to create a numeric format:

130

\2\6

1 Performance counter parameters

In order to define a new parameter for monitoring performance counters, one line can be added to configuration file of Zabbix
agent and the agent must be restarted. For example:

PerfCounter=UserPerfCounter1,"\Memory\Page Reads/sec",30
or
PerfCounter=UserPerfCounter2,"\4\24",30

Then it is possible to use ”UserPerfCounter1” and ”UserPerfCounter2” as usual item checks in the frontend or elsewhere, simalar
to UserParameter.

12 Triggers

Trigger is defined as a logical expression and represents system state.

A trigger may have the following values:

VALUE DESCRIPTION

PROBLEM Normally means that something happened. For example, processor load is too high.
Called TRUE in older Zabbix versions.

OK This is a normal trigger state. Called FALSE in older Zabbix versions.
UNKNOWN In this case, Zabbix cannot evaluate trigger expression. This may happen because

of several reasons:
server is unreachable
trigger expression cannot be evaluated
trigger expression has been recently changed

Triggers are evaluated based on history data only; trend data are never considered.

1 Expression for triggers

The expressions used in triggers are very flexible. You can use them to create complex logical tests regarding monitored statistics.

1.1 Expression operators

The following operators are supported for triggers (descending priority of execution):

PRIORITY OPERATOR DEFINITION

1 / Division
2 *** |Multiplication | |3** - Arithmetical

mi-
nus

4 + Arithmetical plus
5 < Less than. The operator is defined as:

A<B ⇔ (A<=B-0.000001)
6 > More than. The operator is defined as:

A>B ⇔ (A>=B+0.000001)
7 # Not equal. The operator is defined as:

A#B ⇔ (A<=B-0.000001) |
(A>=B+0.000001)

8 = Is equal. The operator is defined as:
A=B ⇔ (A>B-0.000001) &
(A<B+0.000001)

9 & Logical AND
10 | Logical OR

2 Trigger functions

Trigger functions allow to reference collected values, current time and other factors.

2.1 Time based functions

131

Trigger status (expression) is recalculated every time Zabbix server receives new value, if this value is part of this expression. If
time based functions are used in the expression, it is recalculated every 30 seconds by a zabbix timer process. If both time-based
and non-time-based functions are used in an expression, it is recalculated when a new value is received and every 30 seconds.

Time based functions are:

• nodata()
• date()
• dayofmonth()
• dayofweek()
• time()
• now()

2.2 List of trigger functions

The following functions are supported:

Attention:
1) All functions return numeric values only. Comparison to strings is not supported, for example.

2) String arguments should be double quoted. Otherwise, they might get misinterpreted.

▼ FUNCTION Parameter(s) Supported value types

Definition
abschange ignored float, int, str, text, log

Returns absolute
difference between
last and previous
values.
For strings:
0 - values are
equal
1 - values differ

avg sec or #num float, int
Average value for
period of time.
Parameter defines
length of the
period in seconds.
The function
accepts a second,
optional parameter
time_shift. It is
useful when there
is a need to
compare the
current average
value with the
average value
time_shift seconds
back. For instance,
avg(3600,86400)
will return the
average value for
an hour one day
ago.
Parameter
time_shift is
supported from
Zabbix 1.8.2.

change ignored float, int, str, text, log

132

▼ FUNCTION Parameter(s) Supported value types

Returns difference
between last and
previous values.
For strings:
0 - values are
equal
1 - values differ

count sec or #num float, int, str, text, log

133

▼ FUNCTION Parameter(s) Supported value types

Number of
historical values
for period of time
in seconds or
number of last
#num values
matching
condition.
The function
accepts second
optional parameter
pattern, third
parameter
operator, and
fourth parameter
time_shift.
For example,
count(600,12) will
return exact
number of values
equal to ’12’ stored
in the history.
Integer items:
exact match
Float items: match
within 0.000001
String, text and log
items: operators
like (default), eq,
ne are supported
Supported
operators:
eq - equal
ne - not equal
gt - greater
ge - greater or
equal
lt - less
le - less or equal
like (textual
search only) -
matches if
contains pattern.
For example,
count(600,12,”gt”)
will return exact
number of values
which are more
than ’12’ stored in
the history for the
last 600 seconds.
Another example:
count(#10,12,”gt”,86400)
will return exact
number of values
which are larger
than ’12’ stored in
the history among
last 10 values 24
hours ago.
If there is a need to
count arbitrary
values, for
instance, for the
last 600 seconds
24 hours ago,
count(600„,86400)
should be used.
Parameter #num is
supported from
Zabbix 1.6.1.
Parameter
time_shift and
string operators
are supported from
Zabbix 1.8.2. See
function avg for an
example of using
time_shift.

134

▼ FUNCTION Parameter(s) Supported value types

date ignored any
Returns current
date in YYYYMMDD
format.
For example:
20031025

dayofmonth ignored any
Returns day of
month in range of
1 to 31.
This function is
supported since
Zabbix 1.8.5.

dayofweek ignored any
Returns day of
week in range of 1
to 7. Mon - 1, Sun -
7.

delta sec or #num float, int
Same as
max()-min().
Since Zabbix 1.8.2,
the function
supports a second,
optional parameter
time_shift. See
function avg for an
example of its use.

diff ignored float, int, str, text, log
Returns:
1 - last and
previous values
differ
0 - otherwise

fuzzytime sec float, int
Returns 1 if
timestamp (item
value) does not
differ from Zabbix
server time for
more than N
seconds, 0 -
otherwise.
Usually used with
system.localtime
to check that local
time is in sync with
local time of
Zabbix server.

iregexp 1st - string, 2nd - sec or #num str, log, text
This function is non
case-sensitive
analogue of
regexp.

last sec or #num float, int, str, text, log

135

▼ FUNCTION Parameter(s) Supported value types

Last (most recent)
value. Parameter:
sec - ignored
#num - Nth value
For example,
last(0) is always
equal to last(#1)
last(#3) - third
most recent value
The function also
supports a second
optional
time_shift
parameter. For
example,
last(0,86400) will
return the most
recent value one
day ago.
Zabbix does not
guarantee exact
order of values if
more than two
values exist within
one second in
history.
Parameter #num is
supported starting
from Zabbix 1.6.2.
Parameter
time_shift is
supported starting
from Zabbix 1.8.2.
See function avg
for an example of
its use.

logeventid string log
Check if Event ID
of the last log
entry matches a
regular expression.
Parameter defines
the regular
expression, POSIX
extended style.
Returns:
0 - does not match
1 - matches
This function is
supported since
Zabbix 1.8.5.

logseverity ignored log

136

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

▼ FUNCTION Parameter(s) Supported value types

Returns log
severity of the last
log entry.
Parameter is
ignored.
0 - default severity
N - severity
(integer, useful for
Windows event
logs). Zabbix takes
log severity from
field Information
of Windows event
log.

logsource string log
Check if log source
of the last log
entry matches
parameter.
0 - does not match
1 - matches
Normally used for
Windows event
logs. For example,
logsource(”VMware
Server”).

max sec or #num float, int
Maximal value for
period of time.
Parameter defines
length of the
period in seconds.
Since Zabbix 1.8.2,
the function
supports a second,
optional parameter
time_shift. See
function avg for an
example of its use.

min sec or #num float, int
Minimal value for
period of time.
Parameter defines
length of the
period in seconds.
Since Zabbix 1.8.2,
the function
supports a second,
optional parameter
time_shift. See
function avg for an
example of its use.

nodata sec any
Returns:
1 - if no data
received during
period of time in
seconds. The
period should not
be less than 30
seconds.
0 - otherwise

137

▼ FUNCTION Parameter(s) Supported value types

now ignored any
Returns number of
seconds since the
Epoch (00:00:00
UTC, January 1,
1970).

prev ignored float, int, str, text, log
Returns previous
value. Parameter is
ignored.
Same as last(#2)

regexp 1st - string, 2nd - sec or #num str, log, text
Check if last value
matches regular
expression.
Parameter defines
regular expression,
POSIX extended
style.
Second optional
parameter is
number of seconds
or number of lines
to analyse. In this
case more than
one value will be
processed.
This function is
case-sensitive.
Returns:
1 - found
0 - otherwise

str 1st - string, 2nd - sec or #num str, log, text
Find string in last
(most recent)
value. Parameter
defines string to
find. Case
sensitive!
Second optional
parameter is
number of seconds
or number of lines
to analyse. In this
case more than
one value will be
processed.
Returns:
1 - found
0 - otherwise

strlen sec or #num str, log, text

138

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

▼ FUNCTION Parameter(s) Supported value types

Length of the last
(most recent)
value in characters
(not bytes).
Parameters are the
same as for
function last.
For example,
strlen(0) is equal to
strlen(#1)
strlen(#3) - length
of the third most
recent value
strlen(0,86400) -
length of the most
recent value one
day ago.
This function is
supported since
Zabbix 1.8.4.

sum sec or #num float, int
Sum of values for
period of time.
Parameter defines
length of the
period in seconds.
Since Zabbix 1.8.2,
the function
supports a second,
optional parameter
time_shift. See
function avg for an
example of its use.

time ignored any
Returns current
time in HHMMSS
format. Example:
123055

Note:
Some of the functions cannot be used for non-numeric parameters!

2.3 Trigger function parameters

Most of numeric functions accept number of seconds as an argument. You may also use prefix # to specify that argument has a
different meaning:

FUNCTION CALL MEANING

sum(600) Sum of all values within 600 seconds
sum(#5) Sum of the last 5 values

Function last uses a different meaning for values, prefixed with the hash mark - it makes it choose n-th previous value, so given
values (from most recent to least recent) 3, 7, 2, 6, 5, last(#2) would return 7 and last(#5) would return 5.

Trigger expressions support using various multipliers as suffixes.

A simple useful expression might look like:

{<server>:<key>.<function>(<parameter>)}<operator><constant>

139

A parameter must be given even for those functions which ignore it. Example: last(0)

Example 1

Processor load is too high on www.zabbix.com

{www.zabbix.com:system.cpu.load[all,avg1].last(0)}>5

’www.zabbix.com:system.cpu.load[all,avg1]’ gives a short name of the monitored parameter. It specifies that the server is
’www.zabbix.com’ and the key being monitored is ’system.cpu.load[all,avg1]’. By using the function ’last()’, we are referring to
the most recent value. Finally, ’>5’ means that the trigger is in the PROBLEM state whenever the most recent processor load
measurement from www.zabbix.com is greater than 5.

Example 2

www.zabbix.com is overloaded

{www.zabbix.com:system.cpu.load[all,avg1].last(0)}>5|{www.zabbix.com:system.cpu.load[all,avg1].min(600)}>2

The expression is true when either the current processor load is more than 5 or the processor load was more than 2 during last 10
minutes.

Example 3

/etc/passwd has been changed

Use of function diff:

{www.zabbix.com:vfs.file.cksum[/etc/passwd].diff(0)}=1

The expression is true when the previous value of checksum of /etc/passwd differs from the most recent one.

Similar expressions could be useful to monitor changes in important files, such as /etc/passwd, /etc/inetd.conf, /kernel, etc.

Example 4

Someone is downloading a large file from the Internet

Use of function min:

{www.zabbix.com:net.if.in[eth0,bytes].min(300)}>100K

The expression is true when number of received bytes on eth0 is more than 100 KB within last 5 minutes.

Example 5

Both nodes of clustered SMTP server are down

Note use of two different hosts in one expression:

{smtp1.zabbix.com:net.tcp.service[smtp].last(0)}=0&{smtp2.zabbix.com:net.tcp.service[smtp].last(0)}=0

The expression is true when both SMTP servers are down on both smtp1.zabbix.com and smtp2.zabbix.com.

Example 6

Zabbix agent needs to be upgraded

Use of function str():

{zabbix.zabbix.com:agent.version.str("beta8")}=1

The expression is true if Zabbix agent has version beta8 (presumably 1.0beta8).

Example 7

Server is unreachable

{zabbix.zabbix.com:icmpping.count(1800,0)}>5

The expression is true if host ”zabbix.zabbix.com” is unreachable more than 5 times in the last 30 minutes.

Example 8

No heartbeats within last 3 minutes

Use of function nodata():

{zabbix.zabbix.com:tick.nodata(180)}=1

140

’tick’ must have type ’Zabbix trapper’. In order to make this trigger work, item ’tick’ must be defined. The host should periodically
send data for this parameter using zabbix_sender. If no data is received within 180 seconds, the trigger value becomes PROBLEM.

Example 9

CPU activity at night time

Use of function time():

{zabbix:system.cpu.load[all,avg1].min(300)}>2&{zabbix:system.cpu.load[all,avg1].time(0)}>000000&{zabbix:system.cpu.load[all,avg1].time(0)}<060000

The trigger may change its status to true, only at night (00:00-06:00) time.

Example 10

Check if client local time is in sync with Zabbix server time

Use of function fuzzytime():

{MySQL_DB:system.localtime.fuzzytime(10)}=0

The trigger will change to the problem state in case when local time on server MySQL_DB and Zabbix server differs by more than
10 seconds.

3 Trigger dependencies

Trigger dependencies can be used to define relationship between triggers.

Trigger dependencies is a very convenient way of limiting number of messages to be sent in case if an event belongs to several
resources.

For example, a host Host is behind router Router2 and the Router2 is behind Router1.

Zabbix - Router1 - Router2 - Host

If the Router1 is down, then obviously the Host and the Router2 are also unreachable. One does not want to receive three notifica-
tions about the Host, the Router1 and the Router2. This is when Trigger dependencies may be handy.

In this case, we define these dependencies:

trigger 'Host is down' depends on trigger 'Router2 is down'
trigger 'Router2 is down' depends on trigger 'Router1 is down'

Before changing status of trigger ’Host is down’, Zabbix will check if there are corresponding trigger dependencies defined. If so,
and one of the triggers is in PROBLEM state, then trigger status will not be changed and thus actions will not be executed and
notifications will not be sent.

Zabbix performs this check recursively. If Router1 or Router2 is unreachable, the Host trigger won’t be updated.

4 Trigger severity

Trigger severity defines how important is a trigger. Zabbix supports following trigger severities:

SEVERITY DEFINITION COLOR

Not classified Unknown severity. Gray.
Information For information purposes. Light green.
Warning Be warned. Light yellow.
Average Average problem. Dark red.
High Something important has happened. Red.
Disaster Disaster. Financial losses, etc. Bright red.

The severities are used to:

• visual representation of triggers. Different colors for different severities.
• audio alarms in Status of Triggers screen. Different audio for different severities.
• user media. Different media (notification channel) for different severities. For example, SMS - high severity, email - other.

5 Hysteresis

Sometimes a trigger must have different conditions for different states. For example, we would like to define a trigger which would
become PROBLEM when server room temperature is higher than 20C while it should stay in the state until temperature will not
become lower than 15C.

In order to do this, we define the following trigger:

141

Example 1

Temperature in server room is too high

({TRIGGER.VALUE}=0&{server:temp.last(0)}>20)|
({TRIGGER.VALUE}=1&{server:temp.last(0)}>15)

Note use of macro {TRIGGER.VALUE}. The macro returns current trigger value.

Example 2

Free disk space is too low

Problem: it is less than 10GB for last 5 minutes

Recovery: it is more than 40GB for last 10 minutes

({TRIGGER.VALUE}=0&{server:vfs.fs.size[/,free].max(5m)}<10G) |
({TRIGGER.VALUE}=1&{server:vfs.fs.size[/,free].min(10m)}<40G)

Note use of macro {TRIGGER.VALUE}. The macro returns current trigger value.

13 Screens and Slide Shows

Zabbix screens allow grouping of various information for quick access and display on one screen. An easy-to-use screen builder
makes creating screens easy and intuitive.

A screen is a table which may contain the following elements in each cell:

• simple graphs
• user-defined graphs
• maps
• other screens
• plain text information
• server information (overview)
• trigger information (overview)
• data overview
• clock
• history of events
• history of actions
• URL (data taken from other location)

The number of elements per screen is unlimited.

You can configure screens in Configuration → Screens and view them in Monitoring → Screens as well as include your favourite
screens in the favourites section of Monitoring → Dashboard.

Attention:
If graph height is set as less than 120 pixels, no trigger will be displayed in the legend.

A slide show is a series of screens, which will be automatically rotated according to configured update intervals.

You can configure slide shows in Configuration → Slides.

PARAMETER Description

Name Name of slide show.
Update interval (in sec) This parameter defines the default interval between screen

rotation, in seconds.
Slides List of individual slides (screens)
Screen Screen name
Delay How long the screen will be displayed, in seconds. If set to 0,

Update Interval of the slide show will be used.

Example 1

Slide show ”Zabbix administrators”

142

The slide show consists of two screens which will be displayed in the following order:

Zabbix Server ⇒ Pause 60 seconds ⇒ Zabbix Server2 ⇒ Pause 30 seconds ⇒ Zabbix Server ⇒ Pause 60 seconds ⇒ Zabbix Server2
⇒ ...

14 IT Services

IT Services are intended for those who want to get a high-level (business) view of monitored infrastructure. In many cases, we
are not interested in low-level details, like lack of disk space, high processor load, etc. What we are interested in is availability of
service provided by our IT department. We can also be interested in identifying weak places of IT infrastructure, SLA of various IT
services, structure of existing IT infrastructure, and many other information of higher level.

Zabbix IT Services provide answers to all mentioned questions.

IT Services is hierarchy representation of monitored data.

A very simple IT service structure may look like:

IT Service
|
|-Workstations
| |
| |-Workstation1
| |
| |-Workstation2
|
|-Servers

Each node of the structure has attribute status. The status is calculated and propagated to upper levels according to selected
algorithm. At the lowest level of IT Services are triggers. The status of individual nodes is affected by the status of their triggers.

Warning:
Note that triggers with severities Not classified and Information do not impact SLA calculation.

Configuring IT Services

To configure IT Services, go to Configuration → IT Services.

On this screen you can build a hierarchy of your monitored infrastructure. The highest-level parent service is ’root’. You can build
your hierarchy downward by adding lower-level parent services and then individual nodes to them.

143

Click on a service to add services to it or edit the service. A form is displayed where you can edit service attributes.

Configuring an IT Service

IT Service attributes:

Parameter Description

Name Service name.
Parent service Parent service the service belongs to.
Depends on List of child services the service depends on.
Status calculation algorithm Method of calculating service status:

Do not calculate - do not calculate service status
Problem, if at least one child has a problem - considered to
be a problem if already one child service has a problem
Problem, if all children have problems - considered to be a
problem only if all child services are having problems

Calculate SLA Enable SLA calculation and display.
Acceptable SLA (in %) SLA percentage that is acceptable for this service. Used for

reporting.

144

Parameter Description

Service times By default, all services are expected to operate 24x7x365. If
exceptions needed, add new service times.

New service time Service times:
One-time downtime - a single downtime. Service state within
this period does not affect SLA.
Uptime - service uptime
Downtime - service state within this period does not affect SLA.
Add the respective hours.
Note: Service times affect only the service they are configured for.
Thus, a parent service will not take into account the service time
configured on a child service (unless a corresponding service time
is configured on the parent service as well).

Link to trigger Linkage to trigger:
None - no linkage
trigger name - linked to the trigger, thus depends on the trigger
status
Services of the lowest level must be linked to triggers. (Otherwise
their state will not be represented accurately.)

Sort order Sort order for display, lowest comes first.

Monitoring IT Services

To monitor IT Services, go to Monitoring → IT Services.

A list of the existing IT services is displayed along with data of their status and SLA. From the dropdown in the upper right corner
you can select a desired period for display.

Displayed data:

Parameter Description

Service Service name.
Status Status of service:

OK - no problems
(trigger colour and severity) - indicates a problem and its
severity

Reason Indicates the reason of problem (if any).
SLA (period) Displays SLA bar. Green/red ratio indicates the proportion of

availability/problems.
SLA Displays acceptable SLA/current SLA value. If current value is

below the acceptable level, it is displayed in red.
Graph Contains link to a graph of availability data.

You can also click on the green/red SLA bar to access the IT Services Availability Report.

145

Here you can assess IT service availability data over a longer period of time on daily/weekly/monthly/yearly basis.

15 User permissions

All Zabbix users access the Zabbix application through the Web-based front end. Each Zabbix user is assigned a unique login
name and a password. All user passwords are encrypted and stored on the Zabbix database. Users can not use their user id and
password to log directly into the UNIX server unless they have also been set up accordingly to UNIX. Communication between the
Web Server and the user’s browser can be protected using SSL.

Access permissions on screen within the menu may be set for each user. By default, no permissions are granted on a screen when
user is registered to the Zabbix.

Note that a user is automatically disconnected after 30 minutes of inactivity.

1 Overview

Zabbix has a flexible user permission schemawhich can be efficiently used tomanage user permission within one Zabbix installation
or in a distributed environment.

Permissions are granted to user groups on a host group level.

Zabbix supports several types of users. The type controls what administrative functions a user has permission to.

2 User types

User types are used to define access to administrative functions and to specify default permissions.

User type Description

Zabbix User The user has access to Monitoring menu. The user has no access
to any resources by default. Permissions to host groups must be
explicitly assigned.

Zabbix Admin The user has access to Monitoring and Configuration. The user has
no access to any host groups by default. Permissions to host
groups must be explicitly given.

Zabbix Super Admin The user has access to everything: Monitoring, Configuration and
Administration. The user has Read-Write access to all host groups.
Permissions cannot be revoked by denying access to specific host
groups.

16 The Queue

1 Overview

Zabbix Queue displays items that are waiting for a refresh. The Queue is just a logical representation of data from the database.
There is no IPC queue or any other queue mechanism in Zabbix.

Statistics shown by the Queue is a good indicator of performance of Zabbix server.

2 How to read

The Queue on a standalone application or when displayed for a master node shows items waiting for a refresh.

146

In this case, we see that we have three items of type Zabbix agent waiting to be refreshed 0-5 seconds, and one item of type
Zabbix agent (active) waiting more than five minutes (perhaps the agent is down?). Note that information displayed for a child
node is not up-to-date. The master node receives historical data with a certain delay (normally, up-to 10 seconds for inter-node
data transfer), so the information is delayed.

On the screenshot we see that there are 93 items waiting more than 5 minutes for refresh on node ”Child”, however we should not
trust the information as it depends on:

• performance of the Child node
• communications between Master and Child nodes
• possible local time difference between Master and Child nodes

Note:
A special item key zabbix[queue] can be used to monitor health of the queue by Zabbix. There’s a full list of such internal
items in item configuration section.

147

17 Utilities

1 Start-up scripts

The scripts are used to automatically start/stop Zabbix processes during system’s start-up/shutdown.

The scripts are located under directory misc/init.d.

2 snmptrap.sh

The script is used to receive SNMP traps. The script must be used in combination with snmptrapd, which is part of package
net-snmp.

Configuration guide:

• Install snmptrapd (part of net-snmp or ucd-snmp)
• Edit snmptrapd.conf.
Add this line:

traphandle default /bin/bash /home/zabbix/bin/snmptrap.sh
* Copy misc/snmptrap/snmptrap.sh to ~zabbix/bin
* Edit snmptrap.sh to configure some basic parameters
* Add special host and trapper (type "string") item to Zabbix. See snmptrap.sh for the item's key.
* Run snmptrapd

18 Regular expressions

Complex regular expressions can be created and tested in the Zabbix frontend by going to Administration → General → Regular
expressions.

1 Using regular expressions

After a regular expression has been created, it can be used everywhere regular expressions are supported by referring to it’s name,
prefixed with **@*, for example, @mycustomregexp*.

2 Regular expression types

All regular expressions in Zabbix, whether created with the advanced editor, or entered manually, support POSIX extended regular
expressions.

19 Items

An item is a single performance or availability check (metric).

1 Item key

1.1 Flexible and non-flexible parameters

A flexible parameter is a parameter which accepts an argument. For example, vfs.fs.size[*] is a flexible parameter. ’*’ is any string
that will be passed as an argument to the parameter. Correct definition examples:

• vfs.fs.size[/]
• vfs.fs.size[/opt]

1.2 Key format

Item key format, including key parameters, must follow syntax rules. The following illustrations depict supported syntax. Allowed
elements and characters at each point can be determined by following the arrows - if some block can be reached through the line,
it is allowed, if not - it is not allowed.

Item key

To construct a valid item key, one starts with specifying the key name, then there’s a choice to either have parameters or not - as
depicted by the two lines that could be followed.

148

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

Key name

The key name itself has a limited range of allowed characters, which just follow each other. Allowed characters are:

0-9a-zA-Z_-.

Which means:

• all numbers;
• all lowercase letters;
• all uppercase letters;
• underscore;
• dash;
• dot.

Key parameters

An item key can have multiple parameters that are comma separated.

Individual key parameter

Each key parameter can be either a quoted string, an unquoted string or an array.

149

The parameter can also be left empty, thus using the default value. In that case, the appropriate number of commas must
be added if any further parameters are specified. For example, item key icmpping[„200„500] would specify that the interval
between individual pings is 200 milliseconds, timeout - 500 milliseconds, and all other parameters are left at their defaults.

Parameter - quoted string

If the key parameter is a quoted string, any Unicode character is allowed, and included double quotes must be backslash escaped.

Parameter - unquoted string

If the key parameter is an unquoted string, any Unicode character is allowed except comma and right square bracket (]).

Parameter - array

If the key parameter is an array, it is again enclosed in square brackets, where individual parameters come following multiple
parameters specifying rules and syntax.

1.3 Available encodings

The parameter ”encoding” is used to specify encoding for processing corresponding item checks, so that data acquired will not
be corrupted. For a list of supported encodings (code page identifiers), please consult respective documentation, such as docu-
mentation for libiconv (GNU Project) or Microsoft Windows SDK documentation for ”Code Page Identifiers”. If an empty ”encoding”
parameter is passed, then ANSI with system specific extension (Windows) or UTF-8 (default locale for newer Unix/Linux distribu-
tions, see your system’s settings) is used by default.

2 Unsupported items

An item can become unsupported if its value can not be retrieved for some reason. Such items are still rechecked at a fixed interval,
configurable in Administration section.

3 Supported by Platform

150

http://www.gnu.org/software/libiconv/

Note:
In the following lists parameters that are included in angle brackets <like_this> are optional.

Items marked with ”X” are supported, the ones marked with ”-” are not supported.
If an item is marked with ”?”, it is not known whether it is supported or not.
If an item is marked with ”r”, it means that it requires root privileges.
If a parameter is marked with ”i”, it means that it is ignored.

NetBSD
OpenBSD ▼▼
Mac
OS X

▼▼

Tru64 ▼▼
AIX ▼▼
HP-UX ▼▼
Solaris ▼▼
FreeBSD ▼▼
Linux
2.6

▼▼

Linux
2.4

▼▼

Windows ▼▼
Parameter
/ sys-
tem

▼▼

▼▼ 1 2 3 4 5 6 7 8 9 10 11
agent.hostname X X X X X X X X X X X
agent.ping X X X X X X X X X X X
agent.version X X X X X X X X X X X
kernel.maxfiles - X X X - - - ? X X X
kernel.maxproc - - X X X - - ? X X X
log[file,<regexp>,<encoding>,<maxlines>]X X X X X X X X X X X
logrt[file_format,<regexp>,<encoding>,<maxlines>]X X X X X X X X X X X
eventlog[name,<regexp>,<severity>,<source>,<eventid>,
<maxlines>]X - - - - - - - - - -
net.if.collisions[if]- X X X X - X - - X r
net.if.in[if,<mode>]X X X X X - X - - X r
mode
▲

bytes
(de-
fault)

X X X X X1 - X - - X r

packets X X X X X - X - - X r
errors X X X X X1 - X - - X r
dropped X X X X - - - - - X r

net.if.list X - - - - - - - - - -
net.if.out[if,<mode>]X X X X X - X - - X r
mode
▲

bytes
(de-
fault)

X X X X X1 - X - - X r

packets X X X X X - X - - X r
errors X X X X X1 - X - - X r
dropped X X X - - - - - - - -

net.if.total[if,<mode>]X X X X X - X - - X r
mode
▲

bytes
(de-
fault)

X X X X X1 - X - - X r

packets X X X X X - X - - X r
errors X X X X X1 - X - - X r
dropped X X X - - - - - - - -

net.tcp.dns[<ip>,zone]- X X X X X X X X X X
net.tcp.dns.query[<ip>,zone,<type>]- X X X X X X X X X X
net.tcp.listen[port]X X X X X - - - - - -
net.tcp.port[<ip>,port]X X X X X X X X X X X
net.tcp.service[service,<ip>,<port>]X X X X X X X X - X X

151

net.tcp.service.perf[service,<ip>,<port>]X X X X X X X X - X X
net.udp.listen[port]- X X - - - - - - - -

1 2 3 4 5 6 7 8 9 10 11
proc.mem[<name>,<user>,<mode>,<cmdline>]- X X X X - X X ? X X
mode
▲

sum
(de-
fault)

- X X X X - X X ? X X

avg - X X X X - X X ? X X
max - X X X X - X X ? X X
min - X X X X - X X ? X X

proc.num[<name>,<user>,<state>,<cmdline>]X X X X X - X X ? X X
state
▲

all
(de-
fault)

- X X X X - X X ? X X

sleep - X X X X - X X ? X X
zomb - X X X X - X X ? X X
run - X X X X - X X ? X X

sensor[device,sensor,<mode>]- X - - - - - - - X -
services[<type>,<state>,<exclude>]X - - - - - - - - - -
system.boottime- X X X X - - - - X X
system.cpu.intr - X X X X - X - - X X
system.cpu.load[<cpu>,<mode>]X X X X X X - X ? X X
mode
▲

avg1
(de-
fault)

X X X X X X - X ? X X

avg5 X X X X X X - X ? X X
avg15 X X X X X X - X ? X X

system.cpu.num[<type>]X X X X X X X - - X X
type
▲

online
(de-
fault)

X X X X X X X - - X X

max - X X X X - - - - - -
system.cpu.switches- X X X X - X - - X X
system.cpu.util[<cpu>,<type>,<mode>]X X X X X X X X ? X X
type
▲

user
(de-
fault)

- X X X X X X X ? X X

nice - X X X - X - X ? X X
idle - X X X X X X X ? X X
system X X X X - X X X ? X X
kernel - - - - X - - - - - -
iowait - - X - - - X - - - -
wait - - - - X - - - - - -
interrupt - - X X - - - - - X -
softirq - - X - - - - - - - -
steal - - X - - - - - - - -

mode
▲

avg1
(de-
fault)

X X X X - X X X ? X -

avg5 X X X X - X X - ? X -
avg15 X X X X - X X - ? X -

1 2 3 4 5 6 7 8 9 10 11
system.hostname[<type>]X X X X X X X X X X X
system.localtimeX X X X X X X X X X X
type
▲

utc
(de-
fault)

X X X X X X X X X X X

local X X X X X X X X X X X
system.run[command,<mode>]X X X X X X X X X X X
mode
▲

wait
(de-
fault)

X X X X X X X X X X X

152

nowait X X X X X X X X X X X
system.stat[resource,<type>]- - - - - - X - - - -
system.swap.in[<device>,<type>]
(speci-
fying
a de-
vice is
only
sup-
ported
under
Linux)

- X X - X - - - - X -

type
▲
(pages
will
only
work
if
device
was
not
speci-
fied)

count
(de-
fault
under
all ex-
cept
Linux)

- X X - X - - - - X -

sectors - X X - - - - - - - -
pages
(de-
fault
under
Linux)

- X X - X - - - - X -

system.swap.out[<device>,<type>]
(speci-
fying
a de-
vice is
only
sup-
ported
under
Linux)

- X X - X - - - - X -

type
▲
(pages
will
only
work
if
device
was
not
speci-
fied)

count
(de-
fault
under
all ex-
cept
Linux)

- X X - X - - - - X -

sectors - X X - - - - - - - -
pages
(de-
fault
under
Linux)

- X X - X - - - - X -

system.swap.size[<device>,<type>]X X X X X - - X ? X -
type
▲

free
(de-
fault)

X X X X X - - X ? X -

total X X X X X - - X ? X -
used - X X X - - - - - X -

153

pfree - X X X X - - - ? X -
pused - X X X X - - - ? X -

system.uname X X X X X X X X - X X
system.uptime X X X X X - X ? ? X X
system.users.num- X X X X X X X - X X

1 2 3 4 5 6 7 8 9 10 11
vfs.dev.read[<device>,<type>,<mode>]- X X X X - - - - X -
type
▲

(defaults
are
differ-
ent
under
vari-
ous
OSes)

sectors - X X - - - - - - - -

operations- X X X X - - - - X -
bytes - - - X X - - - - X -
sps - X X - - - - - - - -
ops - X X X - - - - - - -
bps - - - X - - - - - - -

mode
▲
(compatible
only
with
type
in:
sps,
ops,
bps)

avg1
(de-
fault)

- X X X - - - - - i -

avg5 - X X X - - - - - i -
avg15 - X X X - - - - - i -

vfs.dev.write[<device>,<type>,<mode>]- X X X X - - - - X -
type
▲

(defaults
are
differ-
ent
under
vari-
ous
OSes)

sectors - X X - - - - - - - -

operations- X X X X - - - - X -
bytes - - - X X - - - - X -
sps - X X - - - - - - - -
ops - X X X - - - - - - -
bps - - - X - - - - - - -

mode
▲
(compatible
only
with
type
in:
sps,
ops,
bps)

avg1
(de-
fault)

- X X X - - - - - i -

avg5 - X X X - - - - - i -
avg15 - X X X - - - - - i -

vfs.file.cksum[file]X X X X X X X X - X X
vfs.file.exists[file]X X X X X X X X X X X

154

vfs.file.md5sum[file]X X X X X X X X - X X
vfs.file.regexp[file,regexp,<encoding>]X X X X X X X X - X X
vfs.file.regmatch[file,regexp,<encoding>]X X X X X X X X - X X
vfs.file.size[file] X X X X X X X X - X X

1 2 3 4 5 6 7 8 9 10 11
vfs.file.time[file,<mode>]X X X X X X X X - X X
mode
▲

modify
(de-
fault)

X X X X X X X X - X X

access X X X X X X X X - X X
change X X X X X X X X - X X

vfs.fs.inode[fs,<mode>]- X X X X X X X ? X X
mode
▲

total
(de-
fault)

- X X X X X X X ? X X

free - X X X X X X X ? X X
used - X X X X X X X ? X X
pfree - X X X X X X X ? X X
pused - X X X X X X X ? X X

vfs.fs.size[fs,<mode>]X X X X X X X X ? X X
mode
▲

total
(de-
fault)

X X X X X X X X ? X X

free X X X X X X X X ? X X
used X X X X X X X X ? X X
pfree X X X X X X X X ? X X
pused X X X X X X X X ? X X

vm.memory.size[<mode>]X X X X X X X X ? X X
mode
▲

total
(de-
fault)

X X X X X X X X ? X X

free X X X X X X X X ? X X
used - - - X - - - - - X X
shared - X X X - - - - ? X X
buffers - X X - - - - - ? X X
cached X X X X - - X - ? X X
pfree X X X X - - - - - X X
pused - - - X - - - - - X X
available- X X - - - - - - - -

web.page.get[host,<path>,<port>]X X X X X X X X X X X
web.page.perf[host,<path>,<port>]X X X X X X X X X X X
web.page.regexp[host,<path>,<port>,<regexp>,<length>]X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11

[1] These values for these items are not supported for loopback interfaces on Solaris systems prior to Solaris 10 6/06 as byte, error
and utilisation statistics are not stored and/or reported by the kernel. However, if you’re monitoring a Solaris system via net-snmp,
values may be returned as net-snmp carries legacy code from the cmu-snmp dated as old as 1997 that, upon failing to read byte
values from the interface statistics returns the packet counter (which does exist on loopback interfaces) multiplied by an arbitrary
value of 308. This makes the assumption that the average length of a packet is 308 octets, which is a very rough estimation as
the MTU limit on Solaris systems for loopback interfaces is 8892 bytes.

These values should not be assumed to be correct or even closely accurate. They are guestimates. The Zabbix agent does not do
any guess work, but net-snmp will return a value for these fields.

4 Zabbix Agent

List of supported parameters

Key

▲ Description Return value Parameters Comments
agent.hostname

155

Key

Returns agent
host name.

String value - Returns the
actual value of
the agent
hostname from
a configuration
file.
This item is
supported
starting from
version
1.8.13.

agent.ping
Check the
agent
availability.

Returns ’1’ if
agent is
available,
nothing if
unavailable.

- Use function
nodata() to
check for host
unavailability.

agent.version
Version of
Zabbix Agent.

String - Example of
returned value:
1.8.2

kernel.maxfiles
Maximum
number of
opened files
supported by
OS.

Number of
files. Integer.

kernel.maxproc
Maximum
number of
processes
supported by
OS.

Number of
processes.
Integer.

log[file,<regexp>,<encoding>,<maxlines>]
Monitoring of
log file.

Log. file – full file
name
regexp –
regular
expression for
pattern
encoding -
Code Page
identifier
maxlines -
Maximum
number of new
lines per
second the
agent will send
to Zabbix
Server or
Proxy. This
parameter
overrides the
’MaxLinesPer-
Second’ option
in zab-
bix_agentd.conf

Must be
configured as
an Active
Check.
Example:
log[/home/zabbix/logs/logfile„,100]
See detailed
description.

logrt[file_pattern,<regexp>,<encoding>,<maxlines>]

156

Key

Monitoring of
log file with log
rotation
support.

Log. file_pattern –
absolute path
to file and
regexp
describing the
file name
pattern
regexp –
regular
expression
describing the
required
content pattern
encoding -
Code Page
identifier
maxlines -
Maximum
number of new
lines per
second the
agent will send
to Zabbix
Server or
Proxy. This
parameter
overrides the
’MaxLinesPer-
Second’ option
in zab-
bix_agentd.conf

Must be
configured as
an Active
Check.

Examples:
logrt[”/home/zabbix/logs/^logfile[0-
9]{1,3}$”„,100]
- will match a
file like
”logfile1” (will
not match
”.logfile1”)
logrt[”/home/user/logfile_.*_[0-
9]{1,3}”,”pattern_to_match”,”UTF-
8”,100] - will
collect data
from files such
”logfile_abc_1”
or
”logfile__001”.

Log rotation is
based on last
modification
times of files.
See detailed
description.

eventlog[name,<regexp>,<severity>,<source>,<eventid>,<maxlines>]

157

Key

Monitoring of
event logs.

Log. name – event
log name
regexp –
regular
expression
severity –
regular
expression
The parameter
accepts the
following
values:
”Information”,
”Warning”,
”Error”,
”Failure Audit”,
”Success
Audit”
source -
Source
identifier
eventid -
regular
expression
maxlines -
Maximum
number of new
lines per
second the
agent will send
to Zabbix
Server or
Proxy. This
parameter
overrides the
’MaxLinesPer-
Second’ option
in zab-
bix_agentd.conf

Must be
configured as
an Active
Check.

Examples:

eventlog[Application]

eventlog[Security„”Failure
Au-
dit”„529|680]

eventlog[System„”Warning|Error”]

eventlog[System„„^1$]

eventlog[System„„@TWOSHORT]
- here custom
regular
expression
TWOSHORT is
defined as type
Result is
TRUE and
expression
itself is
^1$|^70$.

net.if.collisions[if]
Out-of-window
collision.

Number of
collisions.
Integer.

if - interface

net.if.in[if,<mode>]

158

Key

Network
interface
incoming
statistic.

Integer. if - interface
mode –
bytes number
of bytes
(default)
packets
number of
packets
errors number
of errors
dropped
number of
dropped
packets

Multi-byte
interface
names on
Windows
supported
since Zabbix
agent version
1.8.6.

Examples:
net.if.in[eth0,errors]
net.if.in[eth0]
You may use
this key with
Delta (speed
per second) in
order to get
bytes per
second
statistics.

net.if.list
List of network
interfaces:
Type Status
IPv4
Description

String Supported
since Zabbix
agent version
1.8.1.
Multi-byte
interface
names
supported
since Zabbix
agent version
1.8.6. Disabled
interfaces are
not listed.

Note that en-
abling/disabling
some
components
may change
their ordering
in the Windows
interface
name.

net.if.out[if,<mode>]

159

Key

Network
interface
outgoing
statistic.

Integer. if - interface
mode –
bytes number
of bytes
(default)
packets
number of
packets
errors number
of errors
dropped
number of
dropped
packets

Multi-byte
interface
names on
Windows
supported
since Zabbix
agent version
1.8.6.

Examples:
net.if.out[eth0,errors]
net.if.out[eth0]
You may use
this key with
Delta (speed
per second) in
order to get
bytes per
second
statistics.

net.if.total[if,<mode>]
Sum of
network
interface
incoming and
outgoing
statistics.

Integer. if - interface
mode –
bytes number
of bytes
(default)
packets
number of
packets
errors number
of errors
dropped
number of
dropped
packets

Examples:
net.if.total[eth0,errors]
net.if.total[eth0]
You may use
this key with
Delta (speed
per second) in
order to get
bytes per
second
statistics.
Note that
dropped
packets are
supported only
if both net.if.in
and net.if.out
work for
dropped
packets on
your platform.

net.tcp.dns[<ip>,zone]
Checks if DNS
service is up.

0 - DNS is down
1 - DNS is up

ip - IP address
of DNS server
(ignored)
zone - zone to
test the DNS

Example:
net.tcp.dns[127.0.0.1,zabbix.com]

Internationalized
domain names
are not
supported,
please use
IDNA encoded
names instead.

net.tcp.dns.query[<ip>,zone,<type>]

160

Key

Performs a
query for the
supplied DNS
record type.

On success
returns a
character
string with the
required type
of information.

ip - IP address
of DNS server
(ignored)
zone - zone to
test the DNS
type - Record
type to be
queried
(default is SOA)

Example:
net.tcp.dns.query[127.0.0.1,zabbix.com,MX]
type can be
one of:
A, NS, CNAME,
MB, MG, MR,
PTR, MD, MF,
MX, SOA, NULL,
WKS, HINFO,
MINFO, TXT,
SRV

SRV record
type is
supported on
Unix since
Zabbix agent
version 1.8.6.

Internationalized
domain names
are not
supported,
please use
IDNA encoded
names instead.

net.tcp.listen[port]
Checks if this
TCP port is in
LISTEN state.

0 - it is not
1 - it is in
LISTEN state

port - TCP port
number

Example:
net.tcp.listen[80]

On Linux
supported
since Zabbix
agent version
1.8.4

net.tcp.port[<ip>,port]
Check, if it is
possible to
make TCP
connection to
port number
port.

0 - cannot
connect
1 - can connect

ip - IP ad-
dress(default is
127.0.0.1)
port - port
number

Example:
net.tcp.port[,80]
can be used to
test availability
of web server
running on port
80.
Old naming:
check_port[*]
For simple TCP
performance
testing use
net.tcp.service.perf[tcp,<ip>,<port>]
Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).

161

Key

net.tcp.service[service,<ip>,<port>]
Check if
service is
running and
accepting TCP
connections.

0 - service is
down
1 - service is
running

service - one
of ssh, ntp,
ldap, smtp, ftp,
http, pop, nntp,
imap, tcp
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example:
net.tcp.service[ftp„45]
can be used to
test availability
of FTP server
on TCP port 45.
Old naming:
check_service[*]
Note that
before Zabbix
version 1.8.3
service.ntp
should be used
instead of ntp.
Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.port for
checks like
these.
Checking of
LDAP by
Windows agent
is currently not
supported.

net.tcp.service.perf[service,<ip>,<port>]

162

Key

Check
performance of
service

0 - service is
down
sec - number
of seconds
spent while
connecting to
the service

service - one
of ssh, ntp,
ldap, smtp, ftp,
http, pop, nntp,
imap, tcp
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example:
net.tcp.service.perf[ssh]
can be used to
test speed of
initial response
from SSH
server.
Old naming:
check_service_perf[*]
Note that
before Zabbix
version 1.8.3
service.ntp
should be used
instead of ntp.
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service.perf[tcp,<ip>,<port>]
for checks like
these.
Checking of
LDAP by
Windows agent
is currently not
supported.

net.udp.listen[port]
Checks if this
UDP port is in
LISTEN state.

0 - it is not
1 - it is in
LISTEN state

port - UDP port
number

Example:
net.udp.listen[68]

On Linux
supported
since Zabbix
agent version
1.8.4

proc.mem[<name>,<user>,<mode>,<cmdline>]

163

Key

Memory used
by process
name running
under user
user

Memory used
by process.

name -
process name
user - user
name (default
is all users)
mode - one of
avg, max, min,
sum (default)
cmdline - filter
by command
line

Example:
proc.mem[,root]
- memory used
by all
processes
running under
user ”root”.
proc.mem[zabbix_server,zabbix]
- memory used
by all
processes
zabbix_server
running under
user zabbix
proc.mem[,oracle,max,oracleZABBIX]
- memory used
by most
memory
hungry process
running under
oracle having
oracleZABBIX
in its command
line

proc.num[<name>,<user>,<state>,<cmdline>]
Number of
processes
name having
state running
under user
user

Number of
processes.

name -
process name
user - user
name (default
is all users)
state - one of
all (default),
run, sleep,
zomb
cmdline - filter
by command
line

Example:
proc.num[,mysql]
- number of
processes
running under
user mysql
proc.num[apache2,www-
data] - number
of apache2
running under
user www-data
proc.num[,oracle,sleep,oracleZABBIX]
- number of
processes in
sleep state
running under
oracle having
oracleZABBIX
in its command
line
On Windows,
only name and
user
arguments are
supported.

sensor[device,sensor,<mode>]

164

Key

Hardware
sensor reading.

device -
device name (if
<mode> is
used, it is a
regular
expression)
sensor -
sensor name (if
<mode> is
used, it is a
regular
expression)
mode - one of
avg, max, min
(if omitted,
device and
sensor are
treated
verbatim).

On Linux 2.4,
reads
/proc/sys/dev/sensors.
Example:
sensor[w83781d-
i2c-0-
2d,temp1]
Prior to Zabbix
1.8.4, format
sensor[temp1]
was used.

On OpenBSD,
reads
hw.sensors
MIB. Example:
sensor[cpu0,temp0]
- temperature
of one CPU
sensor[”cpu[0-
2]$”,temp,avg]
- average
temperature of
the first three
CPU’s
Supported on
OpenBSD since
Zabbix 1.8.4.

system.boottime
Timestamp of
system boot.

Integer. Time in
seconds.

system.cpu.intr
Device
interrupts.

Integer.

system.cpu.load[<cpu>,<mode>]
CPU load. Processor load.

Float.
cpu - CPU
number
(default is all
CPUs, only
default ”all” is
supported)
mode - one of
avg1
(default),avg5
(average within
5 minutes),
avg15

Example:
system.cpu.load[]
Old naming:
sys-
tem.cpu.loadX

system.cpu.num[<type>]
Number of
CPUs.

Number of
available
processors.

type - one of
online
(default), max

Example:
system.cpu.num

system.cpu.switches
Context
switches.

Switches
count.

Old naming:
sys-
tem[switches]

system.cpu.util[<cpu>,<type>,<mode>]

165

http://en.wikipedia.org/wiki/Load_(computing)

Key

CPU(s)
utilisation.

Processor
utilisation in
percents

cpu - CPU
number
(default is all
CPUs)
type - one of
idle, nice, user
(default),
system, kernel,
iowait,
interrupt,
softirq, steal
mode - one of
avg1
(default),avg5
(average within
5 minutes),
avg15

Old naming:
sys-
tem.cpu.idleX,
sys-
tem.cpu.niceX,
sys-
tem.cpu.systemX,
sys-
tem.cpu.userX
Example:
system.cpu.util[0,user,avg5]

system.hostname[<type>]
Returns host
name.

String value type (only on
Windows,
ignored on
other systems)
- netbios
(default) or
host

On Windows
the value is
acquired from
either GetCom-
puterName()
(for netbios)
or
gethostname()
(for host)
function and
from
”hostname”
command on
other systems.

Example of
returned value
www.zabbix.com

Parameter
for this item
is supported
starting from
version 1.8.6.

system.localtime
System time. Integer or

string value.
utc - (default)
the time since
the Epoch
(00:00:00 UTC,
January 1,
1970),
measured in
seconds.
local - the
time in the
’yyyy-mm-
dd,hh:mm:ss.nn,+hh:mm’
format

system.run[command,<mode>]

166

Key

Run specified
command on
the host.

Text result of
the command

command -
command for
execution
mode - one of
wait (default,
wait end of
execution),
nowait (do not
wait)

Example:
system.run[ls -l
/] - detailed file
list of root
directory.
Note:
To enable this
functionality,
agent
configuration
file must have
EnableRe-
moteCom-
mands=1
option.

system.stat[resource,<type>]

167

Key

Virtual memory
statistics

Numeric value ent - number
of processor
units this
partition is
entitled to
receive (float)
kthr,<type> -
information
about kernel
thread states:
r - average
number of
runnable
kernel threads
(float)
b - average
number of
kernel threads
placed in the
Virtual Memory
Manager wait
queue (float)
memory,<type>
- information
about the
usage of virtual
and real
memory:
avm - active
virtual pages
(integer)
fre - size of the
free list
(integer)
page,<type>
- information
about page
faults and
paging activity:
fi - file
page-ins per
second (float)
fo - file
page-outs per
second (float)
pi - pages
paged in from
paging space
(float)
po - pages
paged out to
paging space
(float)
fr - pages
freed (page
replacement)
(float)
sr - pages
scanned by
page-
replacement
algorithm
(float)
faults,<type>
- trap and
interrupt rate:
in - device
interrupts
(float)
sy - system
calls (float)
cs - kernel
thread context
switches (float)
cpu,<type> -
breakdown of
percentage
usage of
processor time:
us - user time
(float)
sy - system
time (float)
id - idle time
(float)
wa - idle time
during which
the system had
outstanding
disk/NFS I/O
request(s)
(float)
pc - number of
physical
processors
consumed
(float)
ec - the
percentage of
entitled
capacity
consumed
(float)
lbusy -
indicates the
percentage of
logical
processor(s)
utilization that
occurred while
executing at
the user and
system level
(float)
app - indicates
the available
physical
processors in
the shared pool
(float)
disk,<type> -
disk statistics:
bps - indicates
the amount of
data
transferred
(read or
written) to the
drive in bytes
per second
(integer)
tps - indicates
the number of
transfers per
second that
were issued to
the physical
disk/tape
(float)
This item is
supported
starting from
version 1.8.1.

168

Key

system.swap.in[<device>,<type>]
Swap in (from
device, into
memory)
statistics

Numeric value device - swap
device (default
is all), type -
one of count
(number of
swapins),
sectors
(sectors
swapped in),
pages (pages
swapped in).
See supported
by platform for
details on
defaults.

Example: sys-
tem.swap.in[,pages]
Old naming:
swap[in]

system.swap.out[<device>,<type>]
Swap out (from
memory, onto
device)
statistics

Numeric value device - swap
device (default
is all), type -
one of count
(number of
swapouts),
sectors
(sectors
swapped out),
pages (pages
swapped out).
See supported
by platform for
details on
defaults.

Example: sys-
tem.swap.out[,pages]
Old naming:
swap[out]

system.swap.size[<device>,<type>]
Swap space. Number of

bytes or
percentage1

device - swap
device (default
is all), type -
one of free
(default, free
swap space),
total (total
swap space),
pfree (free
swap space,
percentage),
pused (used
swap space,
percentage)

Example: sys-
tem.swap.size[,pfree]
- percentage of
free swap
space
Old naming:
sys-
tem.swap.free,
sys-
tem.swap.total

system.uname
Returns
detailed host
information.

String value Example of
returned value:
FreeBSD
localhost
4.4-RELEASE
FreeBSD
4.4-RELEASE
#0: Tue Sep 18
11:57:08 PDT
2001 mur-
ray@builder.FreeBSD.org:
/usr/src/sys/compile/GENERIC
i386

169

Key

system.uptime
System’s
uptime in
seconds.

Number of
seconds

Use Units s or
uptime to get
readable
values.

system.users.num
Number of
users
connected.

Number of
users

Command who
is used on
agent side.

vfs.dev.read[<device>,<type>,<mode>]
Disk read
statistics.

Integer for
type in:
sectors,
operations,
bytes
Float for type
in: sps, ops,
bps

device - disk
device (default
is ”all”2)
type - one of
sectors,
operations,
bytes, sps, ops,
bps (must
specify exactly
which
parameter to
use, since
defaults are
different under
various OSes).
sps, ops, bps
means:
sectors,
operations,
bytes per
second
respectively
mode - one of
avg1
(default),avg5
(average within
5 minutes),
avg15.
Compatible
only with type
in: sps, ops,
bps

Default values
of ’type’
parameter for
different OSes:
FreeBSD - bps
Linux - sps
OpenBSD -
operations
Solaris - bytes

Example:
vfs.dev.read[,operations]
Old naming:
io[*]

The type
parameters
ops, bps and
sps on
supported
platforms are
limited to 8
devices (7
individual
devices and
one ”all”).

Supports LVM
since Zabbix
1.8.6.

Until Zabbix
1.8.6, only
relative device
names may be
used (for
example, sda),
since 1.8.6
optional /dev/
prefix may be
used (for
example,
/dev/sda)

vfs.dev.write[<device>,<type>,<mode>]

170

Key

Disk write
statistics.

Integer for
type in:
sectors,
operations,
bytes
Float for type
in: sps, ops,
bps

device - disk
device (default
is ”all”2)
type - one of
sectors,
operations,
bytes, sps, ops,
bps (must
specify exactly
which
parameter to
use, since
defaults are
different under
various OSes).
sps, ops, bps
means:
sectors,
operations,
bytes per
second
respectively
mode - one of
avg1
(default),avg5
(average within
5 minutes),
avg15.
Compatible
only with type
in: sps, ops,
bps

Default values
of ’type’
parameter for
different OSes:
FreeBSD - bps
Linux - sps
OpenBSD -
operations
Solaris - bytes

Example:
vfs.dev.write[,operations]
Old naming:
io[*]

The type
parameters
ops, bps and
sps on
supported
platforms are
limited to 8
devices (7
individual
devices and
one ”all”).

Supports LVM
since Zabbix
1.8.6.

Until Zabbix
1.8.6, only
relative device
names may be
used (for
example, sda),
since 1.8.6
optional /dev/
prefix may be
used (for
example,
/dev/sda)

vfs.file.cksum[file]
Calculate file
checksum

File checksum,
calculated by
algorithm used
by UNIX
cksum.

file - full path
to file

Example of
returned value:
1938292000

Example:
vfs.file.cksum[/etc/passwd]

Old naming:
cksum

vfs.file.exists[file]
Check if file
exists

1 - regular file
or a link
(symbolic or
hard) to
regular file
exists.

0 - otherwise

file - full path
to file

Example:
vfs.file.exists[/tmp/application.pid]

The return
value depends
on what
S_ISREG POSIX
macro returns.

171

Key

vfs.file.md5sum[file]
File’s MD5
checksum

MD5 hash of
the file.

file - full path
to file

Example of
returned value:
b5052decb577e0fffd622d6ddc017e82

Example:
vfs.file.md5sum[/etc/zabbix/zabbix_agentd.conf]

The file size
limit (64 MB)
for this item
was removed
in version
1.8.6.

vfs.file.regexp[file,regexp,<encoding>]
Find string in a
file

Matched string
or EOF if
expression not
found

file - full path
to file
regexp - GNU
regular
expression
encoding -
Code Page
identifier

Only the first
matching line
is returned.
Example:
vfs.file.regexp[/etc/passwd,zabbix]

vfs.file.regmatch[file,regexp,<encoding>]
Find string in a
file

0 - expression
not found
1 - found

file - full path
to file
regexp - GNU
regular
expression
encoding -
Code Page
identifier

Example:
vfs.file.regmatch[/var/log/app.log,error]

vfs.file.size[file]
File size Size in bytes. file - full path

to file
File must have
read
permissions for
user zabbix

Example:
vfs.file.size[/var/log/syslog]

vfs.file.time[file,<mode>]
File time
information.

Unix
timestamp.

file - full path
to the file
mode - one of
modify
(default,
modification
time), access -
last access
time, change -
last change
time

Example:
vfs.file.time[/etc/passwd,modify]

vfs.fs.inode[fs,<mode>]
Number of
inodes

Numeric value fs - filesystem
mode - one of
total (default),
free, used,
pfree (free,
percentage),
pused (used,
percentage)

Example:
vfs.fs.inode[/,pfree]
Old naming:
vfs.fs.inode.free[*],
vfs.fs.inode.pfree[*],
vfs.fs.inode.total[*]

172

Key

vfs.fs.size[fs,<mode>]
Disk space Disk space in

bytes
fs - filesystem
mode - one of
total (default),
free, used,
pfree (free,
percentage),
pused (used,
percentage)

In case of a
mounted
volume, disk
space for local
file system is
returned.
Example:
vfs.fs.size[/tmp,free]
Old naming:
vfs.fs.free[*],
vfs.fs.total[*],
vfs.fs.used[*],
vfs.fs.pfree[*],
vfs.fs.pused[*]

vm.memory.size[<mode>]
Memory size Memory size in

bytes
mode - one of
total (default),
shared, free,
buffers,
cached, pfree,
available

Old naming:
vm.memory.buffers,
vm.memory.cached,
vm.memory.free,
vm.memory.shared,
vm.memory.total

web.page.get[host,<path>,<port>]
Get content of
web page

Web page
source as text

host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)

Returns EOF on
fail. Example:
web.page.get[www.zabbix.com,index.php,80]

web.page.perf[host,<path>,<port>]
Get timing of
loading full
web page

Time in
seconds

host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)

Returns 0 on
fail. Example:
web.page.perf[www.zabbix.com,index.php,80]

web.page.regexp[host,<path>,<port>,<regexp>,<length>]
Get first
occurrence of
regexp in web
page

Matched string host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)
regexp - GNU
regular
expression
length -
maximum
number of
characters to
return

Returns EOF in
case of no
match or any
other failures
(such as
timeout, failed
connection,
etc). Example:
web.page.regexp[www.zabbix.com,index.php,80,OK,2]

173

See this section for the difference of an item being performed as a passive or an active check.

Note:
[1] The system.swap.size key might report incorrect data on virtualized (VMware ESXi, VirtualBox) Windows platforms. In
this case use perf_counter[\700(_Total)\702] key to obtain correct swap usage percentage.

Note:
[2] If default ”all” is used for the first parameter of vfs.dev.* keys then the keys will return summary statistics, including:
all block devices like sda, sbd and their partitions sda1, sda2, sdb3 ... and multiple devices (MD raid) based on those block
devices/partitions and logical volumes (LVM) based on those block devices/partitions.
In such cases returned values should be considered only as relative value (dynamic in time) but not as absolute values.

Note:
Linux-specific note. Zabbix agent must have read-only access to filesystem /proc. Kernel patches from www.grsecurity.org
limit access rights of non-privileged users.

5 Windows-specific parameters

This section contains descriptions of parameters supported by Zabbix Windows agent only.

Key

▲ Description Return value Comments
perf_counter[counter,<interval>]

Value of any
performance
counter, where
”counter” is the
counter path, and
”interval” is the
time period for
storing the
average value.

Average value of
the ”counter”
during last
”interval” seconds.
The ”interval”
must be between 1
and 900 seconds
(included) and the
default value is 1.

Performance
Monitor can be
used to obtain list
of available
counters. Until
version 1.6 this
parameter will
return correct
value only for
counters that
require just one
sample (like
\System\Threads).
It will not work as
expected for
counters that
require more that
one sample - like
CPU utilisation.
Since 1.6 interval
is used, so the
check returns an
average value for
last ”interval”
seconds every
time.

service_state[service]
State of service.
Parameter is
service name.

0 – running
1 – paused
2 - start pending
3 - pause pending
4 - continue
pending
5 - stop pending
6 – stopped
7 - unknown
255 – no such
service

Parameter must be
real service name
as seen in service
properties under
”Name:” or name
of EXE file.

174

Key

services[<type>,<state>,<exclude>]
List of services,
separated by a
newline or 0, if list
would be empty.

type - one of all
(default),
automatic, manual,
disabled
state - one of all
(default), stopped,
started,
start_pending,
stop_pending,
running,
continue_pending,
pause_pending,
paused
exclude - list of
services to exclude
it from the result.
Excluded services
should be written
in double quotes,
separated by
comma, without
spaces.
This parameter
is supported
starting from
version 1.8.1.

Examples:
services[,started] -
list of started
services
services[automatic,
stopped] - list of
stopped services,
that should be run
services[automatic,
stopped, ”ser-
vice1,service2,service3”]
- list of stopped
services, that
should be run,
excluding services
with names
service1,service2
and service3

proc_info[process,<attribute>,<type>]

175

Key

Different
information about
specific
process(es).

process - process
name
attribute -
requested process
attribute.
type -
representation
type (meaningful
when more than
one process with
the same name
exists)

The following
attributes are
currently
supported:
vmsize - Size of
process virtual
memory in Kbytes
wkset - Size of
process working
set (amount of
physical memory
used by process) in
Kbytes
pf - Number of
page faults
ktime - Process
kernel time in
milliseconds
utime - Process
user time in
milliseconds
io_read_b -
Number of bytes
read by process
during I/O
operations
io_read_op -
Number of read
operation
performed by
process
io_write_b -
Number of bytes
written by process
during I/O
operations
io_write_op -
Number of write
operation
performed by
process
io_other_b -
Number of bytes
transferred by
process during
operations other
than read and
write operations
io_other_op -
Number of I/O
operations
performed by
process, other than
read and write
operations
gdiobj - Number
of GDI objects used
by process
userobj - Number
of USER objects
used by process

Valid types are:
min - minimal
value among all
processes named
<process>
max - maximal
value among all
processes named
<process>
avg - average
value for all
processes named
<process>
sum - sum of
values for all
processes named
<process>

Examples:
1. In order to get
the amount of
physical memory
taken by all
Internet Explorer
processes, use the
following
parameter:
proc_info[iexplore.exe,wkset,sum]
2. In order to get
the average
number of page
faults for Internet
Explorer processes,
use the following
parameter:
proc_info[iexplore.exe,pf,avg]
Note: All
io_xxx,gdiobj and
userobj attributes
available only on
Windows 2000 and
later versions of
Windows, not on
Windows NT 4.0.

176

Key

6 SNMP Agent

Zabbix must be configured with SNMP support in order to be able to retrieve data provided by SNMP agents.

Warning:
If monitoring SNMPv3 devices, make sure that msgAuthoritativeEngineID (also known as snmpEngineID or ”Engine ID”) is
never shared by two devices. It must be unique for each device.

Note:
For SNMPv3 privacy and authentication currently MD5 and DES protocols are supported.

The following steps have to be performed in order to add monitoring of SNMP parameters:

Step 1

Create a host for the SNMP device.

Enter an IP address. Set the host Status to NOT MONITORED. You can use one of the SNMP templates (Template_SNMPv1_Device,
Template_SNMPv2_Device), which will automatically add the set of items. However, the template may not be compatible with the
host.

Note:
SNMP checks do not use Agent port, it is ignored.

Step 2

Find out the SNMP string of the item you want to monitor.

After creating the host, use ’snmpwalk’ (part of ucd-snmp/net-snmp software which you should have installed as part of the Zabbix
installation) or equivalent tool:

shell> snmpwalk <host or host IP> public

This will give you a list of SNMP strings and their last value. If it doesn’t then it is possible that the SNMP ’community’ is different
from the standard public in which case you will need to find out what it is. You would then go through the list until you find the
string you want to monitor, e.g. you wanted to monitor the bytes coming in to your switch on port 3 you would use:

interfaces.ifTable.ifEntry.ifOctetsIn.3 = Counter 32: 614794138

You should now use the snmpget command to find the OID for interfaces.ifTable.ifEntry.ifInOctets.3:

shell> snmpget -On 10.62.1.22 interfaces.ifTable.ifEntry.ifOctetsIn.3

where the last number in the string is the port number you are looking to monitor. This should give you something like the following:

.1.3.6.1.2.1.2.2.1.10.3 = Counter32: 614794138

again the last number in the OID is the port number.

3COM seem to use port numbers in the hundreds, e.g. port 1 = port 101, port 3 = port 103, but Cisco use regular numbers, e.g.
port 3 = 3.

Step 3

Create an item for monitoring.

So, now go back to Zabbix and click on Items, selecting the SNMP host you created earlier. Depending on whether you used a
template or not when creating your host, you will have either a list of SNMP items associated with your host or just a new item box.
We will work on the assumption that you are going to create the item yourself using the information you have just gathered using
snmpwalk and snmpget, so enter a plain English description in the ’Description’ field of the new item box. Make sure the ’Host’
field has your switch/router in it and change the ’Type’ field to ”SNMPv* agent”. Enter the community (usually public) and enter
the numeric OID that you retrieved earlier in to the ’SNMP OID’ field, i.e. .1.3.6.1.2.1.2.2.1.10.3

Enter the ’SNMP port’ as 161 and the ’Key’ as something meaningful, e.g. SNMP-InOctets-Bps. Choose a Multiplier if you want one
and enter an ’update interval’ and ’keep history’ if you want it to be different from the default. Set the ’Status’ to Monitored, the
’Type of information’ to Numeric (float) and the ’Store value’ to DELTA (important otherwise you will get cumulative values from
the SNMP device instead of the latest change).

177

http://www.net-snmp.org/

Now save the item and go back to the hosts area of Zabbix. From here check that the SNMP device Status shows ’Monitored’ and
check in Latest data for your SNMP data!

Example 1

General example

Parameter Description

Community public
OID 1.2.3.45.6.7.8.0 (or .1.2.3.45.6.7.8.0)
Key <Unique string to be used as reference to triggers>

For example, ”my_param”.

Note that OID can be given in either numeric or string form. However, in some cases, string OID must be converted to numeric
representation. Utility snmpget may be used for this purpose:

shell> snmpget -On localhost public enterprises.ucdavis.memory.memTotalSwap.0

Monitoring of SNMP parameters is possible if either --with-net-snmp or --with-ucd-snmp flag was specified while configuring Zabbix
sources.

Example 2

Monitoring of Uptime

Parameter Description

Community public
Oid MIB::sysUpTime.0
Key router.uptime
Value type Float
Units uptime
Multiplier 0.01

7 Simple checks

Simple checks are normally used for agent-less monitoring or for remote checks of services. Note that Zabbix agent is not needed
for simple checks. Zabbix server is responsible for processing of simple checks (making external connections, etc).

All simple checks, except tcp and tcp_perf, accept one optional parameter:

• port - port number. If missing, standard default service port is used.

Examples of using simple checks:

ftp,155
http
http_perf,8080

Attention:
IP is taken from the Zabbix host definition.

Warning:
Checking of encrypted protocols (like IMAP on port 993 or POP on port 995) is currently not supported. As a workaround,
please use tcp and tcp_perf for checks like these.

List of supported simple checks:

Key

▲ Description Return value
ftp,<port>

Checks if FTP server is
running and accepting
connections

0 - FTP server is down
1 - FTP server is
running

ftp_perf,<port>

178

Key

Checks if FTP server is
running and accepting
connections

0 - FTP server is down
Otherwise, number of
seconds spent
connecting to FTP
server.

http,<port>
Checks if HTTP server
is running and
accepting connections

0 - HTTP server is down
1 - HTTP server is
running

http_perf,<port>
Checks if HTTP (web)
server is running and
accepting connections

0 - HTTP (web) server
is down
Otherwise, number of
seconds spent
connecting to HTTP
server.

icmpping[<target>,<packets>,<interval>,<size>,<timeout>]
Checks if server is
accessible by ICMP
ping
target - host IP or DNS
name
packets - number of
packets
interval - time
between successive
packets in milliseconds
size - packet size in
bytes
timeout - timeout in
milliseconds

0 - ICMP ping fails
1 - ICMP ping
successful

Example:
icmpping[,4] - if at
least one packet of the
four is returned, the
item will return 1.

icmppingloss[<target>,<packets>,<interval>,<size>,<timeout>]
Return percentage of
lost packets
target - host IP or DNS
name
packets - number of
packets
interval - time
between successive
packets in milliseconds
size - packet size in
bytes
timeout - timeout in
milliseconds

Loss of packets in
percents

icmppingsec[<target>,<packets>,<interval>,<size>,<timeout>,<mode>]
Return ICMP ping
response time
target - host IP or DNS
name
packets - number of
packets
interval - time
between successive
packets in milliseconds
size - packet size in
bytes
timeout - timeout in
milliseconds
mode - one of min,
max, avg (default)

Number of seconds

If host is not available
(timeout reached), the
item will return 0.

179

Key

imap,<port>
Checks if IMAP server
is running and
accepting connections

0 - IMAP server is down
1 - IMAP server is
running

imap_perf,<port>
Checks if IMAP server
is running and
accepting connections

0 - IMAP server is down
Otherwise, number of
seconds spent
connecting to IMAP
server.

ldap,<port>
Checks if LDAP server
is running and
accepting connections

0 - LDAP server is down
1 - LDAP server is
running

ldap_perf,<port>
Checks if LDAP server
is running and
accepting connections

0 - LDAP server is down
Otherwise, number of
seconds spent
connecting to LDAP
server.

nntp,<port>
Checks if NNTP server
is running and
accepting connections

0 - NNTP server is
down
1 - NNTP server is
running

nntp_perf,<port>
Checks if NNTP server
is running and
accepting connections

0 - NNTP server is
down
Otherwise, number of
seconds spent
connecting to NNTP
server.

ntp,<port>
Checks if NTP server is
running and accepting
connections

0 - NTP server is down
1 - NTP server is
running

ntp_perf,<port>
Checks if NTP server is
running and accepting
connections

0 - NTP server is down
Otherwise, number of
seconds spent
connecting to NTP
server.

pop,<port>
Checks if POP server is
running and accepting
connections

0 - POP server is down
1 - POP server is
running

pop_perf,<port>
Checks if POP server is
running and accepting
connections

0 - POP server is down
Otherwise, number of
seconds spent
connecting to POP
server.

smtp,<port>
Checks if SMTP server
is running and
accepting connections

0 - SMTP server is
down
1 - SMTP server is
running

smtp_perf,<port>

180

Key

Checks if SMTP server
is running and
accepting connections

0 - SMTP server is
down
Otherwise, number of
seconds spent
connecting to SMTP
server.

ssh,<port>
Checks if SSH server is
running and accepting
connections

0 - SSH server is down
1 - SSH server is
running

ssh_perf,<port>
Checks if SSH server is
running and accepting
connections

0 - SSH server is down
Otherwise, number of
seconds spent
connecting to SSH
server.

tcp,port
Checks if TCP service is
running and accepting
connections

0 - TCP service is down
1 - TCP service is
running

tcp_perf,port
Checks if TCP service is
running and accepting
connections

0 - the service on the
port is down
Otherwise, number of
seconds spent
connecting to the TCP
service.

Timeout processing

Zabbix will not process a simple check longer than Timeout seconds defined in Zabbix server configuration file.

ICMP pings

Zabbix uses external utility fping for processing of ICMP pings. The utility is not part of Zabbix distribution and has to be additionally
installed. If the utility is missing, has wrong permissions or its location does not match FpingLocation defined in configuration
file, ICMP pings (icmpping, icmppingsec and icmppingloss) will not be processed.

fping must be executable by user Zabbix daemons run as and setuid root. Run these commands as user root in order to setup
correct permissions:

shell> chown root:zabbix /usr/sbin/fping
shell> chmod 4710 /usr/sbin/fping

After performing the two commands above check ownership of the fping executable. In some cases the ownership can be reset
by executing the chmod command.

The default values for ICMP checks parameters:

Parameter Value Description fping flag Min Max

packets 3 pings to the target -C 1 10000
interval 1000 milliseconds, ”fping” default -p 20
size 56 or 68 bytes, ”fping” default; 56

bytes on x86, 68 bytes on
x86_64

-b 24 65507

timeout 500 milliseconds, ”fping” default -t 50

Warning:
Warning: fping defaults can differ depending on platform and version - if in doubt, check fping documentation.

Zabbix writes addresses to be checked to a temporary file, which is then passed to fping. If items have different parameters, only
ones with identical parameters are written to a single file.

181

8 Internal checks

Internal checks allow monitoring of the internals of Zabbix. Internal checks are calculated by Zabbix server.

Note:
Internal checks are still processed by Zabbix pollers.

Key

▲ Description Comments
zabbix[boottime]

Startup time of
Zabbix server
process in
seconds.

In seconds
since the
epoch.

zabbix[history]
Number of
values stored
in table
HISTORY

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!

zabbix[history_log]
Number of
values stored
in table
HISTORY_LOG

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!
This item is
supported
starting from
version 1.8.3.

zabbix[history_str]
Number of
values stored
in table
HISTORY_STR

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!

zabbix[history_text]
Number of
values stored
in table
HISTORY_TEXT

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!
This item is
supported
starting from
version 1.8.3.

zabbix[history_uint]
Number of
values stored
in table
HISTORY_UINT

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!
This item is
supported
starting from
version 1.8.3.

zabbix[items]
Number of
items in Zabbix
database

zabbix[items_unsupported]

182

Key

Number of
unsupported
items in Zabbix
database

zabbix[log]
Stores warning
and error
messages
generated by
Zabbix server.

Character. Add
item with this
key to have
Zabbix internal
messages
stored.

zabbix[process,<type>,<mode>,<state>]

183

Key

Time a
particular
Zabbix process
or a group of
processes
(identified by
<type> and
<mode>)
spent in
<state> in
percentage. It
is calculated
for last minute
only.

If <mode> is
Zabbix process
number that is
not running
(for example,
with 5 pollers
running
<mode> is
specified to be
6), such an
item will turn
into
unsupported
state.
Minimum and
maximum
refers to the
usage
percentage for
a single
process. So if
in a group of 3
pollers usage
percentages
per process
were 2, 18 and
66, min would
return 2 and
max would
return 66.
Processes
report what
they are doing
in shared
memory and
the
self-monitoring
process
summarizes
that data each
second. State
changes
(busy/idle) are
registered
upon change -
thus a process
that becomes
busy registers
as such and
doesn’t change
or update the
state until it
becomes idle.
This ensures
that even fully
hung
processes will
be correctly
registered as
100% busy.
Currently,
”busy” means
”not sleeping”,
but in the
future
additional
states might
be introduced -
waiting for
locks,
performing
database
queries, etc.
On Linux and
most other
systems,
resolution is
1/100 of a
second.

The following
process types
are currently
supported:
alerter -
process for
sending
notifications
configuration
syncer -
process for
managing
in-memory
cache of
configuration
data
db watchdog
- sender of a
warning
message in
case DB is not
available
discoverer -
process for
discovery of
devices
escalator -
process for
escalation of
actions
history
syncer -
history DB
writer
http poller -
web monitoring
poller
housekeeper
- process for
removal of old
historical data
icmp pinger -
poller for
icmpping
checks
ipmi poller -
poller for IPMI
checks
node watcher
- process for
sending
historical data
and
configuration
changes
between nodes
self-
monitoring -
process for
collecting
internal server
statistics
poller - normal
poller for
passive checks
proxy poller -
poller for
passive proxies
timer -
process for
evaluation of
time-related
trigger
functions and
maintenances
trapper -
trapper for
active checks,
traps,
inter-node and
-proxy
communication
unreachable
poller - poller
for
unreachable
devices

Note: You can
also see these
process types
in a server log
file.

Valid modes
are:
avg - average
value for all
processes of a
given type
(default)
count - returns
number of
forks for a
given process
type, <state>
should not be
specified
max -
maximum
value
min -
minimum value
<process
number> -
process
number
(between 1 and
the number of
pre-forked
instances). For
example, if 4
trappers are
running, the
value is
between 1 and
4.

Valid states
are:
busy - process
is in busy state,
for example,
processing
request
(default).
idle - process
is in idle state
doing nothing.

Examples:
zabbix[process,poller,avg,busy]
- average time
of poller
processes
spent doing
something
during the last
minute
zabbix[process,”icmp
pinger”,max,busy]
- maximum
time spent
doing
something by
any ICMP
pinger process
during the last
minute
zabbix[process,trapper,count]
- amount of
currently
running
trapper
processes

This item is
supported
starting from
version 1.8.5.

184

Key

zabbix[proxy,<name>,<param>]
Access to Proxy
related
information.

<name> -
Proxy name
List of
supported
parameters
(<param>):
lastaccess –
timestamp of
last heart beat
message
received from
Proxy
For example,
zab-
bix[proxy,”Germany”,lastaccess]
Trigger function
fuzzytime() can
be used to
check
availability of
proxies.

zabbix[queue,<from>,<to>]
Number of
server
monitored
items in the
Queue which
are delayed by
<from> to
<to> seconds,
inclusive.

<from> -
default: 6
seconds
<to> - default:
infinity
Suffixes
s,m,h,d,w are
supported for
these
parameters.
Parameters
from and to
are
supported
starting from
version 1.8.3.

zabbix[requiredperformance]
Required
performance of
the Zabbix
server, in new
values per
second
expected.

Approximately
correlates with
”Required
server
performance,
new values per
second” in
Reports →
Status of
Zabbix.
Supported
since Zabbix
1.6.2.

zabbix[trends]
Number of
values stored
in table
TRENDS

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!

zabbix[trends_uint]

185

Key

Number of
values stored
in table
TRENDS_UINT

Do not use if
MySQL InnoDB,
Oracle or
PostgreSQL is
used!
This item is
supported
starting from
version 1.8.3.

zabbix[triggers]
Number of
triggers in
Zabbix
database

zabbix[uptime]
Uptime of
Zabbix server
process in
seconds.

zabbix[wcache,<cache>,<mode>]
Cache Mode
values all Number of

values
processed by
Zabbix server,
except not
supported.

Counter.

float Counter.
uint Counter.
str Counter.
log Counter.
text Counter.
not supported Number of

processed not
supported
items.

Counter.
This item is
supported
starting from
version 1.8.6.

history pfree Free space in
the history
buffer in
percentage.

Low number
indicates
performance
problems on
the database
side.

total
used
free

trend pfree
total
used
free

text pfree
total
used
free

zabbix[rcache,<cache>,<mode>]
Cache Mode
buffer pfree

total
used
free

186

9 Aggregated checks

Aggregate checks do not require any agent running on a host being monitored. Zabbix server collects aggregate information by
doing direct database queries.

Syntax of an aggregate item’s key

groupfunc["Host group","Item key",itemfunc,parameter]

Multiple host groups may be used since Zabbix 1.8.2 by inserting a comma-delimited array.

Supported group functions:

GROUP FUNCTION DESCRIPTION

grpavg Average value
grpmax Maximum value
grpmin Minimum value
grpsum Sum of values

Supported item functions:

ITEM FUNCTION DESCRIPTION

avg Average value
count Number of values
last Last value
max Maximum value
min Minimum value
sum Sum of values

Warning:
Amount of values (prefixed with #) is not supported.

Examples of keys for aggregate items:

Example 1

Total disk space of host group ’MySQL Servers’.

grpsum["MySQL Servers","vfs.fs.size[/,total]",last,0]

Example 2

Average processor load of host group ’MySQL Servers’.

grpavg["MySQL Servers","system.cpu.load[,avg1]",last,0]

Example 3

Average (5min) number of queries per second for host group ’MySQL Servers’

grpavg["MySQL Servers",mysql.qps,avg,300]

Example 4

Average CPU load on all hosts in multiple host groups.

grpavg[["Servers A","Servers B","Servers C"],system.cpu.load,last,0]

10 External checks

External check is a check executed by Zabbix Server by running a shell script or a binary.

External checks do not require any agent running on a host being monitored.

Syntax of item’s key:

script[parameters]
* script – name of the script.
* parameters – list of command line parameters. Parameters will be used in command line without any changes.

If you don’t want to pass your parameters to the script you may use:

187

script[] or
script <- this simplified syntax is supported starting from Zabbix 1.8.1

Zabbix server will find and execute the command in the directory defined in configuration parameter ExternalScripts in zab-
bix_server.conf. The command will be executed as the user Zabbix server runs as, so any access permissions or environment
variables should be handled in a wrapper script, if necessary, and permissions on the command should allow that user to execute
it. Only commands in the specified directory are available.

Note:
This directory is located on the Zabbix server. For custom command execution using Zabbix agents see user parameter
documentation.

First command line parameter is host IP address or DNS name, other parameters are substituted by parameters.

Zabbix uses the first line (trimmed from trailing whitespace) in the standard output of the script as the value. The following lines,
standard error and the exit code are discarded.

Warning:
Do not overuse external checks! It can decrease performance of the Zabbix system a lot.

Example 1

Execute script check_oracle.sh with parameters ”-h 192.168.1.4”. Host DNS name ’www1.company.com’.

check_oracle.sh[-h 192.168.1.4]

Zabbix will execute:

check_oracle.sh www1.company.com -h 192.168.1.4.

11 SSH checks

Zabbix must be configured with SSH2 support. ::: noteimportant The minimal supported libssh2 library version is 1.0.0. :::

SSH checks are used for agent-less monitoring. Note that Zabbix agent is not needed for SSH checks.

Actual commands to be executed must be placed in the Executed script field in the item configuration. Multiple commands can
be executed one after another by placing them on a new line.

Key Description Comments

ssh.run[<unique
short descrip-
tion>,<ip>,<port>,<encoding>]

Run a command by using SSH remote session

12 Telnet checks

Telnet checks are used for agent-less monitoring. Zabbix agent is not needed for Telnet checks.

Actual commands to be executed must be placed in the Executed script field in the item configuration. Multiple commands can
be executed one after another by placing them on a new line.

Till version 1.8.1, supported characters that the prompt can end with:

• $

• #

•

Zabbix version 1.8.2 adds support for additional character:

• %

Key Description Comments

telnet.run[<unique
short descrip-
tion>,<ip>,<port>,<encoding>]

Run a command on a remote device using telnet
connection

13 Calculated items

188

Attention:
Support of calculated items was introduced in Zabbix 1.8.1

With calculated items you can create calculations on the basis of other items. Thus, calculated items are a way of creating virtual
data sources. Item values will be periodically calculated based on an arithmetical expression.

Resulting data will be stored in the Zabbix database as for any other item - this means storing both history and trends values for
fast graph generation. Calculated items may be used in trigger expressions, referenced by macros or other entities same as any
other item type.

To use calculated items, choose the item type Calculated. The key is a unique item identifier (per host). You can create any key
name using supported symbols. Calculation definition should be entered in the Formula field (named Expression in 1.8.1 and
1.8.2). There is virtually no connection between the formula and key. The key parameters are not used in formula in any way -
variables may be passed to the formula with user macros.

The correct syntax of a simple formula is:

func(<key>|<hostname:key>,<parameter1>,<parameter2>,...)

Where:

ARGUMENT DEFINITION

func One of the functions supported in trigger expressions: last, min,
max, avg, count, etc

key The key of another item whose data you want to use. It may be
defined as key or hostname:key.
Note: Putting the whole key in double quotes (”...”) is strongly
recommended to avoid incorrect parsing because of spaces or
commas within the key.
If there are also quoted parameters within the key, those double
quotes must be escaped by using the backslash (\). See Examples
5 and 6 below.

parameter(s) Any additional parameters that may be required. See Example 5
below.

Note:
All items that are referenced from the calculated item formula must exist and be collecting data. Also, if you change the
item key of a referenced item, you have to manually update any formulas using that key.

A more complex formula may use a combination of functions, operators and brackets. You could use all functions and operators
supported in trigger expressions. Note that syntax is slightly different, however logic and operator precedence are exactly the
same.

Supported characters for a hostname:

a..zA..Z0..9 ._-

Supported characters for a key:

a..zA..Z0..9.,_

Supported characters for a function:

a..zA..Z0..9_

Unlike trigger expressions, Zabbix processes calculated items according to item update interval, not upon receiving a new value.

A calculated item may become unsupported in several cases:

1. referenced item(s) not found
2. no data to calculate a function
3. division by zero
4. incorrect syntax used

Example 1

Calculate percentage of free disk space on ’/’.

Use of function last:

189

100*last("vfs.fs.size[/,free]")/last("vfs.fs.size[/,total]")

Zabbix will take the latest values for free and total disk spaces and calculate percentage according to the given formula.

Example 2

Calculate 10 minute average number of values processed by Zabbix.

Use of function avg:

avg("Zabbix Server:zabbix[wcache,values]",600)

Note that extensive use of calculated items with long time periods may affect performance of the Zabbix Server.

Example 3

Calculate total bandwidth on eth0.

Sum of two functions:

last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]")

Example 4

Calculate percentage of incoming traffic.

More complex expression:

100*last("net.if.in[eth0,bytes]")/(last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]"))

Example 5

Calculate count of records in a log file for last 10 minutes.

Take note of how double quotes are escaped within the quoted key and first function parameter is required:

count("logrt[\"/tmp/test.log\",\"some words pattern\"]",600)

Example 6

Using aggregated items correctly within a calculated item.

Take note of how double quotes are escaped within the quoted key:

last("grpsum[\"video\",\"net.if.out[eth0,bytes]\",\"last\",\"0\"]") / last("grpsum[\"video\",\"nginx_stat.sh[active]\",\"last\",\"0\"]")

20 Frontend definitions

While many things in the frontend can be configured using the frontend itself, some customisations are currently only possible by
editing a definitions file. Located in the frontend directory, this file is include/defines.inc.php. Parameters in this file that could
be of interest to users:

• TRIGGER_FALSE_PERIOD

For how long to show triggers in OK state after their state changed from PROBLEM, in seconds.

Default: 1800

• TRIGGER_BLINK_PERIOD

For how long a trigger should blink after its state changed, in seconds.

Default: 1800

• ZBX_PERIOD_DEFAULT

Default graph period, in seconds. One hour by default.

• ZBX_MIN_PERIOD

Minimum graph period, in seconds. One hour by default.

• ZBX_MAX_PERIOD

Maximum graph period, in seconds. Two years by default since 1.6.7, one year before that.

• GRAPH_YAXIS_SIDE_DEFAULT

190

Default location of Y axis in simple graphs and default value for drop down box when adding items to custom graphs. Possible
values: 0 - left, 1 - right.

Default: 0

• ZBX_UNITS_ROUNDOFF_THRESHOLD

Threshold value for roundoff constants. Values less than it will be rounded to ZBX_UNITS_ROUNDOFF_LOWER_LIMIT number of
digits after comma, greater to ZBX_UNITS_ROUNDOFF_UPPER_LIMIT.

Default: 0.01

• ZBX_UNITS_ROUNDOFF_UPPER_LIMIT

Number of digits after comma, when value is greater than roundoff threshold

Default: 2

• ZBX_UNITS_ROUNDOFF_LOWER_LIMIT

Number of digits after comma, when value is less than roundoff threshold

Default: 6

• ZBX_HISTORY_DATA_UPKEEP (available since 1.8.4)

Number of days, which will reflect on frontend choice when deciding which history or trends table to process for selected period
on data graphing. When this define is:

* less than zero - zabbix takes item values for selected graph period configured in item "keep in history" field to make calculations;
* equal to zero - zabbix takes item values only from trends;
* greater then zero - zabbix overwrites item "keep in history" configured value with this define;

This define could be useful for partitioned history data storage.

Default: -1

• ZAPCAT_COMPATIBILITY

Enables support for Zapcat Zabbix Java JMX bridge item keys syntax

Default: false

Warning:
ZAPCAT_COMPATIBILITY is only available for 1.8.4.

21 Suffixes

It is possible to simplify Zabbix trigger expressions or item keys by using suffixes.

1 Standard multipliers

The following table summarises available standard multipliers in Zabbix frontend and server:

Till_1.8.2 Additional in 1.8.2

Server K (Kilo)
M (Mega)
G (Giga)

T (Tera)

FrontendK (Kilo)
M (Mega)
G (Giga)
T (Tera)

P (Peta)
E (Exa)
Z (Zetta)
Y (Yotta)

2 Time-related multipliers

Since Zabbix version 1.8.2 the following time-related multipliers are available:

• s - seconds; when used, works the same as raw value;
• m - minutes;
• h - hours;

191

http://www.kjkoster.org/zapcat/

• d - days
• w - weeks.

These are supported in trigger expression constants and function parameters, as well as in the internal item zabbix[queue,<from>,<to>]
parameters.

3 Examples

These multipliers allow to write expressions that are easier to understand and maintain, for example the following expressions:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>120
{host:system.uptime[].last(0)}<86400
{host:system.cpu.load.avg(600)}<10

could be changed to:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>2m
{host:system.uptime.last(0)}<1d
{host:system.cpu.load.avg(10m)}<10

22 Time period specification

1 The format

Time period has the following format:

d-d,hh:mm-hh:mm

You can specify more than one time period using a semicolon (;) separator:

d-d,hh:mm-hh:mm;d-d,hh:mm-hh:mm...

2 Description

Format Description

d Day of week: 1 - Monday, 2 - Tuesday ,... , 7 - Sunday
hh Hours: 00-24
mm Minutes: 00-59

Attention:
The upper bound of time period specification is not included. E. g. if you specify 09:00-18:00 the last second included in
the time period will be 17:59:59. This is true starting from version 1.8.7 for everything except Working time which has
always worked this way.

3 Default

Empty time specification equals to 01-07,00:00-24:00

4 Examples

Working hours. Monday - Friday from 9:00 till 18:00:

1-5,09:00-18:00

Working hours plus weekend. Monday - Friday from 9:00 till 18:00 and Saturday, Sunday from 10:00 till 16:00:

1-5,09:00-18:00;6-7,10:00-16:00

5 Quick Start Guide

login add_user email_settings add_host set_up_notifications

192

1 Login

This is ”Welcome to Zabbix” screen. When installed, use user name Admin with password zabbix to connect as Zabbix superuser.

When logged in, you will see ”Connected as Admin” in the lower right corner of the page and access to Configuration and Admin-
istration areas will be granted:

1.1 Protection against brute force attacks

In case of five consecutive failed login attempts, Zabbix interface will pause for 30 seconds in order to prevent brute force and
dictionary attacks.

IP address of a failed login attempt will be displayed after successful login.

2 Add user

After initial installation, Zabbix has only two users defined. User ”Admin” is a Zabbix superuser, which has full permissions. User
”guest” is a special default user. If a user does not log in, the user will be accessing Zabbix with ”guest” permissions. By default,
”guest” has no permissions on Zabbix objects.

To add a new user, navigate to Administration → Users and switch to Users in the dropdown, then click ”Create User”.

In the new user form, make sure to add your user to one of the existing groups, for example Network administrators.

193

By default, new users have no media (notification methods) defined. To create one, click Add in the Media section.

194

In this popup, enter an e-mail address for the user. You can specify a time period when the medium will be active (see Time period
specification page for description of the format), by default a medium is always active. You can also customise severities for which
the medium will be active, but leave all of them enabled for now. Click Add, then click Save in the user properties. The new user
appears in the userlist.

By default, a new user has no permissions. To grant the user rights, click on the group in Groups column. This opens the group
properties form. This user will have read-only access to Linux servers group, so click on Add below the Read only listbox.

In this popup, mark the checkbox next to Linux servers, then click Select.

195

In the user group properties form, click Save.

Note:
In Zabbix, all access rights are assigned to user groups.

Done! You may try to log in using credentials of the new user.

3 Email settings

Initially, Zabbix has several predefined notification delivery methods (media types). Email is one of those. Email configuration can
be found under Menu → Administration → Media types.

Click on Email in the list of pre-defined media types.

196

Set correct SMTP server, SMTP helo and SMTP email values. Press Save when ready.

Note:
SMTP email is used as the From address for outgoing e-mails.

Now you have media type ”Email” defined. A media type must be linked with users, otherwise it will not be used.

4 Monitoring an agent-enabled host

The section provides details about monitoring a host which has Zabbix agent running. You must have the agent installed and
configured properly.

4.1 Monitoring default Zabbix server

Open Configuration → Hosts to see the list of currently defined hosts. The situation will be different depending on Zabbix version
being used.

• If you are using Zabbix up to version 1.8.3, you will see single disabled host, Zabbix server.
• If you are using Zabbix appliance version 1.8.3 or later, you will see single enabled host, Zabbix server.

197

If the host is not monitored, click on Not monitored in the Status column and confirm the popup. That’s it, we don’t have to do
anything else - if agent and server daemons are running properly, the host will be monitored from now on.

4.2 Monitoring a different server

Open Configuration → Hosts to see the list of currently defined hosts. There will be one pre-defined host, but now we want to add
another one.

Click on Create host. As the minimum, host definition for our purposes should have the following defined:

• Host name;
• Host must belong to at least one hostgroup;
• For passive Zabbix agent monitored hosts IP address should be defined;
• For a quickstart, we will use one of the pre-defined templates as well.

Other options will suit us with their defaults.

Host name

• Enter a host name here. Alpha-numericals, spaces and underscores are allowed.

Groups

• Host must belong to at least one host group. Move groups from the right hand side box to the left hand side box and the
opposite until you are satisfied with the result.

IP address

• Enter the IP address of the host. Note that Zabbix agent daemon must have Zabbix server IP address specified in its
configuration file Server directive.

Linked templates

• On the right hand side block Linked templates, click on the Add button, choose Templates in the Group dropdown, then mark
checkbox next to Template_Linux entry (assuming the newly added host is running Linux) and click on Select.

When done, click Save.

The host should be successfully created. Click on Details in the upper left corner of the resulting page - that should show you what
actually happened.

198

According to the details, the effect of using a template should be that this new host now has entities from Template_Linux -
let’s verify that. In the Group dropdown, choose one of the groups you added your new host to. That should show a high level
configuration overview of this host.

4.3 Verifying current configuration

In this list we can see that several items, triggers and graphs supposedly have been added to our new host.

Note:
If the Z icon in the Availability column is red, there is some error with communication - move your mouse cursor over it to
see the error message. If that icon is gray, no status update has happened so far. Check that Zabbix server is running,
and try refreshing the page later as well.

Let’s make sure that this host indeed has those items. Click on Items next to it.

199

Looks like items have been added successfully. Note the Template_Linux text in gray prefixing them, which indicates which template
do the entities come from. What about triggers? Looking above the item list, there’s a horizontal strip which allows to easily
navigate between different entity categories of a host.

200

Note:
By default, Zabbix entity lists are limited to 50 entries per page. you can modify this in your user profile.

In there, click on Triggers.

Great - triggers also seem to be in place (the above screenshot only shows part of the output, though). There was also something
about graphs - using the host bar above the trigger list navigate to custom graph configuration.

Here we can see that some templated custom graphs are available as well.

Now it is time to see what information is available. Go to Menu→Latest data and expand some category in there.

The values are being gathered and displayed along with change information, if any.

201

In Zabbix, for all numeric items a graph can be obtained without any configuration at all - these graphs are generated on runtime.
To view such a graph, click on Graph link next to any item.

You can change the currently displayed time period using the controls above the graph.

Feel free to explore other areas that display monitoring information, including:

• Monitoring → Graphs for custom graphs;
• Monitoring → Triggers for a list of currently active problems;
• Monitoring → Dashboard for a high level overview;
• Monitoring → Maps for network maps;
• Monitoring → Screens for compound pages showing several elements at once.

After having the basic monitoring in place, we might want to actually notify on situation changes, which we’ll set up in the next
section.

5 Set up notifications

We have a host or several hosts monitored. We can see simple and custom graphs, as well as data for individual items. We also
have problem conditions, called triggers, set up, and they are changing from OK to PROBLEM state and back as situation changes.
While we can look at the data to determine the current status, it is not feasible to do so all the time - which means we will want to
set up notifications. To do this, open Configuration → Actions.

202

By default, there are no actions configured. To create one, click Create Action. In the upcoming form, enter a name for the action.
In the most simple case, if we don’t add any conditions, action will be used upon any trigger change from OK to PROBLEM and vice
versa. We still should define what the action should do - and that is done in the Action operations block. Click on New in that block,
which opens new operation configuration form. Here, choose Single user in the Send message to dropdown, then click on Select.
In the upcoming popup, choose the user we created before.

Notice how the e-mail address we specified for that user will be used here.

Macros (or variables) {TRIGGER.NAME} and {STATUS}, currently visible in the Default subject and Default message fields, will
be replaced with trigger name and trigger status, respectively. Trigger status will be either PROBLEM or OK. Click Add in the Edit
operation block.

203

We are done with the simple action configuration, so click Save in the Action block.

Congratulations - we are done with the simple setup of monitoring some host and sending out notifications based on problem
condition definitions.

Note:
If the notifications don’t work, make sure user you created has at least read permissions on the host which generated the
event, as discussed in the ”Add user” step. Additionally, you can check out action log by going to Administration → Audit,
and choosing Actions in the dropdown, located in the upper right corner.

6 XML Import and Export

goals overview data_export data_import map_export_import screen_export_import

1 Goals

Zabbix Import/Export functionality is created to make possible effective exchange of various configuration entities.

Data is exported in XML format which is easy to read and modify.

Use cases:

• Sharing of templates or network maps

Zabbix users may share configuration parameters.

• Integration with third-party tools

Universal XML format makes integration and data import/export possible with third party tools and applications.

Note:
Exporting and importing network maps is supported since Zabbix version 1.8.2.

2 Overview

204

Currently two main categories of configuration are supported for export - hosts and their associated data, and network maps.

2.1 Host import/export

Zabbix host import/export processes the following data:

• Hosts and their linkage to templates;
• Templates;
• Applications;
• Items;
• Triggers;
• Custom graphs;
• User macros.

2.2 Map import/export

Zabbix map import/export supports the following elements since version 1.8.2:

• Full map configuration;
• All map elements, including images, triggers, hosts, host groups and maps;
• All connectors with associated data, including labels and status indicators.

Additionally, since 1.8.3 used images (icons and background images) are exported as well.

2.3 Screen import/export

Zabbix screen import/export supports all screen elements.

3 Host export

For Zabbix versions up to 1.8.3, host and template export is available at Configuration → Export/Import. Starting with 1.8.3, import
and export controls are available on corresponding configuration pages (Configuration → Hosts and Configuration → Templates).

3.1 Since Zabbix 1.8.3

3.1.1 Step 1

Navigate either to Configuration → Hosts or Configuration → Templates, depending on which ones you want to export. Mark
checkboxes next to elements to be exported.

3.1.2 Step 2

Make sure that Export selected is chosen in the activity dropdown below host or template list, then click Go and save the file.

3.2 Up to Zabbix 1.8.3

Step 1

Select elements for export

205

We selected host ”Template_Linux” and all its items and triggers.

Press button ”Preview” to see list of elements to be exported:

206

Step 2

Export data

Press button ”Export” to export selected elements to a local XML file with default name zabbix_export.xml. The file has the following
format (one element of each type is shown):

<?xml version="1.0"?>
<zabbix_export version="1.0" date="11.05.07" time="11.11">
<hosts>

<host name="ZABBIX Server">
<useip>1</useip>
<ip>127.0.0.1</ip>
<port>10050</port>
<status>1</status>
<groups>
</groups>
<items>

<item type="0" key="agent.ping" value_type="3">
<description>Ping to the server (TCP)</description>
<delay>30</delay>
<history>7</history>
<trends>365</trends>
<snmp_port>161</snmp_port>
<valuemap>Service state</valuemap>
<applications>

<application>General</application>
</applications>

</item>
....

</items>
<triggers>

<trigger>

207

<description>Version of zabbix_agent(d) was changed on {HOSTNAME}</description>
<expression>{{HOSTNAME}:agent.version.diff(0)}>0</expression>
<priority>3</priority>

</trigger>
....

<graphs>
<graph name="CPU Loads" width="900" height="200">

<show_work_period>1</show_work_period>
<show_triggers>1</show_triggers>
<yaxismin>0.0000</yaxismin>
<yaxismax>100.0000</yaxismax>
<graph_elements>

<graph_element item="{HOSTNAME}:system.cpu.load[,avg15]">
<color>990000</color>
<yaxisside>1</yaxisside>
<calc_fnc>2</calc_fnc>
<periods_cnt>5</periods_cnt>

</graph_element>
<graph_element item="{HOSTNAME}:system.cpu.load[,avg1]">

<color>009900</color>
<yaxisside>1</yaxisside>
<calc_fnc>2</calc_fnc>
<periods_cnt>5</periods_cnt>

</graph_element>
<graph_element item="{HOSTNAME}:system.cpu.load[,avg5]">

<color>999900</color>
<yaxisside>1</yaxisside>
<calc_fnc>2</calc_fnc>
<periods_cnt>5</periods_cnt>

</graph_element>
</graph_elements>

</graph>
....

</graphs>
</host>

....
</hosts>

</zabbix_export>

4 Host import

For Zabbix versions up to 1.8.3, host and template import is available at Configuration → Export/Import. Starting with 1.8.3, import
and export controls are available on corresponding configuration pages (Configuration → Hosts and Configuration → Templates).

Step 1

Configure settings for data import and press “Import”.

208

Pay attention to the following parameters of the item:

PARAMETER Description

Import file File name of XML file.
Rules Element defines element of XML file.

If parameter Update is set for Existing element, then the import
will update it with data taken from the file. Otherwise it will not
update it.
If parameter Add is set for Missing element, then the import will
add new element with data taken from the file. Otherwise it will
not add it.

Attention:
Note that Zabbix versions 1.8.x place triggers before items in the export and such data can not be imported in Zabbix
1.6.x. If such a path is desired, items should be moved in front of the triggers.

5 Map export and import

Note:
Map export and import is available since Zabbix version 1.8.2.

Map export and import controls can be found under Configuration → Maps menu, where all configured maps are displayed.

5.1 Map exporting

In left bottom corner a selection box is available with two options: ”Export selected” and ”Delete selected”. To export maps:

1. Mark boxes next to maps you wish to export;
2. Select ”Export selected” if it’s not selected already;
3. Press button ”Go”;
4. Select file where Zabbix should store XML data with exported maps.

209

5.2 Map importing

Importing maps is as easy as exporting them. On the top right corner near ”Create Map” button, you will find new button - ”Import
Map”.

To import maps:

1. Press ”Import Map” button. You will get to a screen similar to what you see when importing hosts in Configuration→ Ex-
port/Import (Import) menu;

2. Press on ”Choose file” button to select XML file containing exported Zabbix maps;
3. Check box under ”Update existing” if you need to update (overwrite) existing maps;
4. Check box under ”Add missing” if you need to create a new map if it’s missing;
5. Press import to send needed data to Zabbix frontend;
6. Wait till page reloads. It can take some time if you have lots of maps to import or lots of hosts, triggers etc. Zabbix frontend
will inform you about import success or failure.

Map import dialogue Map import dialogue for Zabbix super admin, showing image
importing options (available since version 1.8.3)

Click on ”Details” link on the left hand side to see more information about what was done by import, or why it failed to import.

5.3 What is exported?

Only map structure is exported. That means all map settings are exported, all contained elements with their settings are exported,
so are the map links and map link status indicators.

5.4 What is not exported?

Any maps, hostgroups, hosts, triggers, images or any others elements related to the exported map are not exported. Thus if at
least one of the elements map refers to is missing, import will fail.

For example, if map refers to a specific trigger on a specific node, but this trigger has been deleted in the meantime, import would
fail with an error message:

Cannot find trigger "our_node5:Zabbix server:Disk is full" used in exported map "Small map".

5.5 Export format

An example empty map export with background image from a distributed setup node:
<sysmap>

<selements>
</selements>
<links>
</links>
<name>TEST</name>
<width>800</width>
<height>600</height>
<backgroundid>

<node>aly_trunk</node>
<name>Map BG</name>

</backgroundid>
<label_type>2</label_type>
<label_location>0</label_location>

210

<highlight>1</highlight>
<expandproblem>1</expandproblem>

</sysmap>

5.5.1 Map elements

Let’s take XML excerpt of some Zabbix map element as an example:

<selement>
<selementid>100100000000372</selementid>
<elementid>
<node>noden1</node>
<host>LocalHost</host>
<description>DOUBLE</description>
<expression>{TimeHost:system.localtime[local].last(0)}=0 & {TimeHost:system.localtime[local].last(0)}=2</expression>

</elementid>
<elementtype>2</elementtype>
<iconid_off>
<node>noden1</node>
<name>Hub</name>

</iconid_off>
<label>New Element</label>
<label_location>-1</label_location>
<x>231</x>
<y>122</y>

</selement>

• <selement> is the opening tag for an element (shorthand of ”System map element”);
• <selementid> is a unique element id, used for map link references;
• <elementid> refers to the actual Zabbix entity that is represented on the map (map/hostgroup/host etc.;
• <node> tag will be present if the exported map comes from a distributed setup, skipped otherwise;
• <elementtype> describes what type of element info is stored in <elementid> node;

Note:
When importing an XML, selementid values don’t have to match any values in the existing dataset - they are only used
to determine map link connections.

5.5.2 Element types and storage

elementtype tag in map export can be one of the following:

Value Type

0 Host
1 Map
2 Trigger
3 Host group
4 Image

• Host reference

DM (distributed monitoring) setup

<node>noden1</node>
<host>LocalHost</host>

Single server setup

<host>LocalHost</host>

Hosts are referred to by host name.

• Map reference

DM setup

<node>noden1</node>
<name>Local map</name>

211

Single server setup

<name>Local map</name>

Maps are referred to by map name.

• Trigger reference

Triggers are described in a more complex way:

DM setup

<node>noden1</node>
<host>LocalHost</host>
<description>Lack of free memory on server {HOSTNAME}</description>
<expression>{LocalHost:vm.memory.size[free].last(0)}<10000</expression>

Single server setup

<host>LocalHost</host>
<description>Lack of free memory on server {HOSTNAME}</description>
<expression>{LocalHost:vm.memory.size[free].last(0)}<10000</expression>

Trigger is referred to by host name, trigger description and trigger expression.

• Host group reference

DM setup

<node>noden1</node>
<name>Local Host Group</name>

Single server setup

<name>Local Host Group</name>

Host groups are referred to by host group name.

• Image reference

Note:
For images <elementid> node can be skipped.

Nodes <iconid_off>, <iconid_on>, <iconid_unknown>, <iconid_maintenance> and <iconid_disabled> describes what
icons should be used for the map element according to its status.

For default icon, <iconid_off> is used.

Inside icon block, image itself is specified: DM setup

<node>noden1</node>
<name>Local Image</name>

Single server setup

<name>Local Image</name>

To use default icon for any state, node for that state should be skipped in the <selement> block.

5.5.3 Element labels

• <label> describes map elements labels. Macros can be used in labels.
• <label_location> is used for positioning element’s label:

Value Type

-1 use map default
0 bottom
1 left
2 right
3 top

5.5.4 Element positioning

<x> and <y> nodes are used for positioning element on the map by x and y coordinates.

212

5.5.5 Map links

Example:

<link>
<selementid1>100100000000399</selementid1>
<selementid2>100100000000402</selementid2>
<drawtype>0</drawtype>
<color>00AA00</color>
<linktriggers>
</linktriggers>

</link>

• <selemetid1> and <selementid2> nodes are used to specify map elements that link connects.
• <drawtype> defines default link style:

Value Style

0 line
2 bold line
3 dot
4 dashed line

• <color> specifies what the default link colour is;
• <linktriggers> contains information about link status indicators.

Example:

<linktrigger>
<triggerid>
<node>aly_trunk</node>
<host>Symmetra PX40 Clone2</host>
<description>APC: Input Current (PHASE L3)</description>
<expression>{Symmetra PX40 Clone2:upsPhaseInputCurrent.L3.last(0)}<15 | {Symmetra PX40 Clone2:upsPhaseInputCurrent.L3.last(0)}>18</expression>

</triggerid>
<drawtype>0</drawtype>
<color>0</color>

</linktrigger>

• <triggerid> describes trigger used for indicating link status. Linked trigger referenced the same as map element trigger;
• <drawtype> and <color> are used to indicate how link should be drawn on the map if this trigger has the highest severity
from all the active triggers that are attached to this link.

5.5.6 Images

Note:
Image import/export is supported since Zabbix version 1.8.3.

It is possible to export and import used images alongside maps. If exported map is using any images, they are stored in the
resulting XML file. An example of how an exported image might look like:

<images>

</images>

Warning:
Value for the <encodedImage> tag is truncated in the above example.

Used tags:

• <images> - root element for images
• <image> - individual image element
• <name> - image name, unique

213

• <imagetype> - image type, where 1 => icon, 2 => background
• <encodedImage> - base64 encoded image

When importing, missing images can be added and existing images can be overwritten by marking appropriate checkboxes. Image
importing is only available to users of Zabbix Super Admin type.

Warning:
Warning: if replacing an existing image, it will affect all maps that are using this image.

It is possible to import images only by unchecking both map checkboxes.

6 Screen export and import

Note:
Screen export and import is available since Zabbix version 1.8.2.

Screen export and import controls can be found under Configuration → Screens menu, where all configured screens are displayed.

6.1 Screen exporting

In left bottom corner a selection box is available with two options: ”Export selected” and ”Delete selected”.

To export screens:

1. Mark checkboxes next to screens you wish to export;
2. Select ”Export selected” if it’s not selected already;
3. Press button ”Go”;
4. Select file where Zabbix should store XML data with exported screens.

6.2 Screen importing

Importing screens is as easy as exporting them. On the top right corner near ”Create Screen” button, you will find new button -
”Import Screen”.

To import screens:

1. Press ”Import Screen” button. File selection along with options to control import is shown;
2. Click the button to select XML file containing exported Zabbix screens;
3. Check box under ”Update existing” if you need to update (overwrite) existing screens;
4. Check box under ”Add missing” if you need to create new screen if it’s missing;
5. Press import to send needed data to the Zabbix frontend;
6. Wait till page reloads. It can take some time if you have lots of screens to import or lots their elements. Zabbix frontend will
inform you about import success or failure. Click on ”Details” link in the left upper corner to see more detailed information
about what has been done by import, or why it failed to import.

|<| |<| |-|

6.3 Exported data

Only screen structure is exported. That includes all screen settings are and all screen elements along with their configuration.

6.4 Not exported data

214

Anything included in the screen itself (like a host, hostgroup or any other data) is not exported.

When importing a screen, if any of the referenced elements is missing, import will fail, for example, with:

Cannot find trigger "child_node5: ZBXHost:DOUBLE CHECK" used in exported screen "Link Screen"

6.5 XML format - screen definition

Screen export consists of screen definition itself and any additional elements.

<screens>
<screen>

<name>Screen name</name>
<hsize>1</hsize>
<vsize>2</vsize>
<screenitems>
<screenitem></screenitem>
...
<screenitem></screenitem>

</screenitems>
</screen>

</screens>

• name - screen name;
• hsize - rows;
• vsize - columns;
• screenitem - individual screen items, described below.

6.6 XML format - screen elements

Available screen elements and their IDs.

Resource type Description

0 #Graph
1 #Simple graph
2 #Map
3 #Plain text
4 #Hosts info
5 #Triggers info
6 #Server info
7 #Clock
8 #Screen
9 #Triggers overview
10 #Data overview
11 #URL
12 #History of actions
13 #History of events
14 #Status of hostgroup triggers
15 #System status
16 #Status of host triggers

6.7 XML format - available element tags

Bold text - mandatory tag for all elements;
Normal text - tag available for all elements;
Italic text - tag optionally available for some elements (see below for details).

• <resourcetype> - identifies element type, as per the table above;
• <resourceid> - identifies resource, if applicable; depends of resource type;
• <width> - element’s width in pixels, if applicable;
• <height> - element’s height in pixels, if applicable;
• <x> - element location on screen table by X axis (cell of the upper left corner);
• <y> - element location on screen table by Y axis (cell of the upper left corner);
• <colspan> - if higher than 1, sets count of columns to merge (to the right);
• <rowspan> - if higher than 1, sets count of rows to merge (down);
• <elements> - amount of rows to show, if applicable;
• <valign> - vertical align: 0 - middle, 1 - top, 2 - bottom;

215

• <halign> - horizontal align: 0 - centre, 1 - left, 2 - right;
• <style> - meaning depends on resource type;
• <dynamic> - allows to apply the element to different hostgroups and/or hosts, if applicable.

If <resourceid> refers to an object by name, it can have subtags. If data is exported from a distributed setup installation, node
will always be identified by name:

<node>Zabbix node</node>

For example, #Simple graph <resourceid> entry from a non-distributed setup would look like this:

<resourceid>
<host>Zabbix server</host>
<key_>system.cpu.load</key_>

</resourceid>

In a distributed setup, it becomes:

<resourceid>
<node>Zabbix node</node>
<host>Zabbix server</host>
<key_>system.cpu.load</key_>

</resourceid>

Individual object references are listed at each element.

6.8 XML format - individual screen element details, A-Z

Each individual element must have mandatory tags from the previous section andmay have tags that are available for all elements.
If there are additional tags available for the specific element, they are listed here.

6.8.1 Clock

Resource type 7. Additional tags:

• <width>;
• <height>;
• <style> - Local time (0), Server time (1).

6.8.2 Data overview

Resource type 10. Additional tags:

• <resourceid> - Host group (by name);
• <width>;
• <height>.

Available <resourceid> contents:

<name>Linux servers</name>

6.8.3 Graph

Resource type 0. Additional tags:

• <resourceid> - Graph (by name);
• <dynamic>.

Available <resourceid> contents:

<host>Zabbix host</host>
<name>Graph name</name>

6.8.4 History of actions

Resource type 12. Additional tags:

• <elements> - amount of rows to show.

6.8.5 History of events

Resource type 13. Additional tags:

• <elements> - amount of rows to show.

6.8.6 Hosts info

Resource type 4. Additional tags:

216

• <resourceid> - Host group (by name).

Available <resourceid> contents:

<name>Linux servers</name>

6.8.7 Map

Resource type 2. Additional tags:

• <resourceid> - Zabbix map (by name).

Available <resourceid> contents:

<name>City map</name>

6.8.8 Plain text

Resource type 3. Additional tags:

• <resourceid> - Item (by key);
• <elements> - number of rows to show;
• <style> - if set, HTML code will rendered for in item data that contains strings;
• <dynamic>.

Available <resourceid> contents:

<host>Zabbix server</host>
<key_>system.cpu.load</key_>

6.8.9 Screen

Resource type 8. Additional tags:

• <resourceid> - Screen (by name);

Available <resourceid> contents:

<name>Application servers screen</name>

6.8.10 Server info

Resource type 6. No additional tags available.

6.8.11 Simple graph

Resource type 1. Additional tags:

• <resourceid> - Item (by key);
• <dynamic>.

Available <resourceid> contents:

<host>Zabbix server</host>
<key_>system.cpu.load</key_>

6.8.12 Status of host triggers

Resource type 16. Additional tags:

• <resourceid> - Host (by name);
• <elements> - number of rows to show.

Available <resourceid> contents:

<host>aleksei_host</host>

6.8.13 Status of hostgroup triggers

Resource type 14. Additional tags:

• <resourceid> - Host group (by name);
• <elements> - number of rows to show.

Available <resourceid> contents:

<name>aaa</name>

217

6.8.14 System status

Resource type 15. No additional tags available.

6.8.15 Triggers info

Resource type 5. Additional tags:

• <resourceid> - Host group (by name);

Available <resourceid> contents:

<name>aaa</name>

6.8.16 Triggers overview

Resource type 9. Additional tags:

• <resourceid> - Host group (by name);

Available <resourceid> contents:

<name>aaa</name>

6.8.17 URL

Resource type 11. Additional tags:

• <url> - fully qualified or relative URL.

6.9 XML export example

The following is a simple screen (2x2), exported to XML. It contains one custom graph in upper left cell (spanning two columns), one
simple graph in the lower left cell and trigger status element, filtered for a hostgroup, in the lower right cell. Notice the encoding
of & as &.

<?xml version="1.0" encoding="UTF-8"?>
<screens>
<screen>

<name>Excellent screen</name>
<hsize>2</hsize>
<vsize>2</vsize>
<screenitems>
<screenitem>
<resourcetype>0</resourcetype>
<resourceid>

<host>Zabbix server</host>
<name>CPU Load & traffic</name>

</resourceid>
<width>1000</width>
<height>100</height>
<x>0</x>
<y>0</y>
<colspan>2</colspan>
<rowspan>0</rowspan>
<elements>0</elements>
<valign>0</valign>
<halign>0</halign>
<style>0</style>
<dynamic>0</dynamic>

</screenitem>
<screenitem>
<resourcetype>1</resourcetype>
<resourceid>

<host>Zabbix server</host>
<key_>zabbix[uptime]</key_>

</resourceid>
<width>500</width>
<height>90</height>
<x>0</x>
<y>1</y>

218

<colspan>0</colspan>
<rowspan>0</rowspan>
<elements>0</elements>
<valign>0</valign>
<halign>0</halign>
<style>0</style>
<dynamic>0</dynamic>

</screenitem>
<screenitem>
<resourcetype>14</resourcetype>
<resourceid>

<name>Linux servers</name>
</resourceid>
<width>500</width>
<height>100</height>
<x>1</x>
<y>1</y>
<colspan>0</colspan>
<rowspan>0</rowspan>
<elements>25</elements>
<valign>0</valign>
<halign>0</halign>
<style>0</style>
<dynamic>0</dynamic>

</screenitem>
</screenitems>

</screen>
</screens>

7 Tutorials

This section contains step-by-step instructions for most common tasks.

extending_agent log_files remote_actions windows_services

1 Extending Zabbix Agents

This tutorial provides step-by-step instructions how to extend functionality of Zabbix agent.

Step 1

Write a script or command line to retrieve required parameter.

For example, we may write the following command in order to get total number of queries executed by a MySQL server:

mysqladmin -uroot status|cut -f4 -d":"|cut -f1 -d"S"

When executed, the command returns total number of SQL queries.

Step 2

Add this command to agent’s configuration file.

Add the command to zabbix_agentd.conf:

UserParameter=mysql.questions,mysqladmin -uroot status|cut -f4 -d":"|cut -f1 -d"S"

mysql.questions is an unique identifier. It can be any string, for example, queries.

Test this parameter by using zabbix_get utility.

Step 3

Restart Zabbix agent.

Agent will reload configuration file.

219

Step 4

Add new item for monitoring.

Add new item with Key=mysql.questions to the monitored host. Type of the item must be either Zabbix Agent or Zabbix Agent
(active).

Be aware that type of returned values must be set correctly on Zabbix server. Otherwise Zabbix won’t accept them.

2 Monitoring of log files

This tutorial provides step-by-step instructions how to setup monitoring of log files. It is assumed that a host is configured already
in Zabbix frontend.

Step 1

Configure Zabbix agent.

Follow standard instructions in order to install and configure agent on monitored host. Make sure that parameter Hostname
matches host name of the host configured in Zabbix frontend.

Also make sure that parameter DisableActive is not set in zabbix_agentd.conf

Step 2

Add a new item for monitoring of a log file.

Pay attention to the following parameters of the item:

PARAMETER Description

Type Must be set to ’Zabbix agent (active)’.
Key Must be set to ’log[file<,regexp>]’. For example:

log[/var/log/syslog], log[/var/log/syslog,error]. Make sure that the
file has read permissions for user ’zabbix’ otherwise the item
status will be set to ’unsupported’. Zabbix agent will filter entries
of log file by the regexp if present.

Type of information Must be set to ’log’.
Update interval (in sec) The parameter defines how often Zabbix agent will check for any

changes in the log file. Normally must be set to 1 second in order
to get new records as soon as possible.

3 Remote commands

This tutorial provides step-by-step instructions on how to setup remote execution of pre-defined commands in case on an event.
It is assumed that Zabbix is configured and operational.

Step 1

On Zabbix agent, enable remote commands. In zabbix_agentd.conf make sure that parameter EnableRemoteCommands is set
to 1 and uncommented. Restart agent daemon if changing this parameter.

Step 2

Configure new action by going to Configuration → Actions and in the New action block choose operation type Remote command.

Pay attention to the following parameters of the action:

PARAMETER Description

Action type Must be set to ’Remote command’.
Remote command Each line must contain an command for remote execution. For

example: host:sudo /etc/init.d/apache restart. Remote command
may contain macros!

220

Attention:
Note the use of sudo - Zabbix user does not have permissions to restart system services by default. See below for hints
on how to configure sudo.

Syntax of remote commands:

REMOTE COMMAND Description

{HOSTNAME}:<command> Command ’command’ will be executed on the host
where the event happened.

<host>:<command> Command ’command’ will be executed on host
’host’.

<group>#<command> Command ’command’ will be executed on all hosts
of host group ’group’.

Note:
Zabbix agent executes commands in background. Zabbix does not check if a command has been executed successfully.

Attention:
Remote commands in Zabbix < 1.4 are limited to 44 characters, in Zabbix >= 1.4 they are limited to 255 characters.

Syntax of IPMI remote commands:

REMOTE COMMAND Description

{HOSTNAME}:IPMI <ipmi control> [value] The syntax is for execution of IPMI command on the
host where the event happened. Supported values:
”on”, ”off” or number (1, by default).

<host>:IPMI <ipmi control> [value] The syntax is for execution of IPMI command on a
single host.

<group>#IPMI <ipmi control> [value] The syntax is for execution of IPMI command for all
hosts of a host group.

Access permissions

Make sure that user ’zabbix’ has execute permissions for configured commands. One may be interested in using sudo to give
access to privileged commands. To configure access, execute as root:

visudo

Example lines that could be used in sudoers file:

allows 'zabbix' user to run all commands without password.
zabbix ALL=NOPASSWD: ALL

allows 'zabbix' user to restart apache without password.
zabbix ALL=NOPASSWD: /etc/init.d/apache restart

Note:
On some systems sudoers file will prevent non-local users from executing commands. To change this, comment out
requiretty option in /etc/sudoers.

Note:
On recent systems it might be required to set Defaults visiblepw in /etc/sudoers.

Example 1

Restart of Windows on certain condition.

In order to automatically restart Windows in case of a problem detected by Zabbix, define the following actions:

221

PARAMETER Description

Action type ’Remote command’
Remote command host:c:\windows\system32\shutdown.exe -r -f

Replace ’host’ with Zabbix hostname of Windows server.

Example 2

Restart the host by using IPMI control.

PARAMETER Description

Action type ’Remote command’
Remote command {HOSTNAME}:IPMI reset on

Example 3

Power off the host by using IPMI control.

PARAMETER Description

Action type ’Remote command’
Remote command {HOSTNAME}:IPMI power off

4 Monitoring of Windows Services

This tutorial provides step-by-step instructions how to setup monitoring of Windows services. It is assumed that ZABBIX server and
ZABBIX agent are configured and operational.

Step 1

Get service name

You can get that name by going to the services mmc and bring up the properties of the service you want to monitor it’s up/down
status. In the General tab you should see a field called Service name. The value that follows that you put in the brackets above.
For example, if I wanted to monitor the ”workstation” service then my service would be lanmanworkstation.

Step 2

Add item for monitoring of the service

Add item with a key service_state[lanmanworkstation], value type Integer, value mapping Windows service state.

9 WEB Monitoring

goals overview web_scenario web_step real_life_scenario

1 Goals

Zabbix WEB Monitoring support is developed with the following goals:

• Performance monitoring of WEB applications
• Availability monitoring of WEB applications
• Support of HTTP and HTTPS
• Support of complex scenarios consisting of many steps (HTTP requests)

222

2 Overview

Zabbix provides effective and very flexible WEB monitoring functionality. The module periodically executes WEB scenarios and
keeps collected data in the database. The data is automatically used for graphs, triggers and notifications.

The following information is collected per each step of WEB scenario:

• Response time
• Download speed per second
• Response code

Zabbix also checks if a retrieved HTML page contains a pre-defined string.

Zabbix WEB monitoring supports both HTTP and HTTPS.

When running a web scenario, Zabbix always follows redirects.

Note:
To use HTTP proxy, set environment variable http_proxy for Zabbix server user. For example,
//http_proxy=http:%%//%%proxy_ip:proxy_port//.

3 WEB Scenario

Scenario is set of HTTP requests (steps), which will be periodically executed by Zabbix server. Normally a scenario is defined for
one particular part of functionality of a WEB application. Scenarios are very convenient way of monitoring user experience. WEB
Scenario is linked to a host application for grouping. WEB Scenario is periodically executed and consists of one or more Steps. All
cookies are preserved during execution of a single scenario.

Example 1

Monitoring of Zabbix GUI

If we want to monitor availability and performance of Zabbix GUI, we have to login, check how quickly Overview and Status of
Triggers screens work and then logout.

The scenario may have the following steps:

1. Login
2. Go to Overview screen
3. Go to Status of Triggers screen
4. Logout

If a step cannot be performed, execution of scenario fails.

Parameter Description

Application WEB scenario will be linked to this application. The application
must exist.
For example: Zabbix server

Name Name of the WEB scenario.
The name will appear in Monitoring → Web
For example: Zabbix GUI

Update interval How often this scenario will be executed, in seconds.
For example: 60

Agent Zabbix will pretend to be the selected browser. Useful for
monitoring of web sites which generate different content for
different web browsers.
For example: Opera 9.02 on Linux

Status Active: active scenario, it will be executed
Disabled: disabled scenario, it will NOT be executed

223

Parameter Description

Variables List of macros to be used in configuration of the steps.
Syntax:
{macro}=value
The macro {macro} will be replaced by ”variable” in step’s URL
and POST variables.
For example:
{user}=guest
{password}=guest
Note: Variables are not URL-encoded.

Steps Steps of the scenario.

As soon as a scenario is created, Zabbix automatically adds the following items for monitoring and links them to the selected
application. Actual scenario name will be used instead of ”Scenario”.

Item Description

Download speed for
scenario ’Scenario’

This item will collect information about download speed (bytes per second) of the whole
scenario, i.e. average for all steps.
Item key: web.test.in[Scenario„bps]
Type: float

Failed step of scenario
’Scenario’

This item keeps number of failed step of the scenario. If all steps are executed
successfully, 0 is returned.
Item key: web.test.fail[Scenario]
Type: integer

Note:
Web monitoring items are added with 30 day history retention and 90 day trend retention periods.

These items can be used to create triggers and define notification conditions.

Example 1

Trigger ”WEB scenario failed”

The trigger expression can be defined as:

{host: web.test.fail[Scenario].last(0)}#0

Do not forget to replace the Scenario with real name of your scenario.

Example 2

Trigger ”WEB application is slow”

The trigger expression can be defined as:

{host: web.test.in[Scenario,,bps].last(0)}<10000

Do not forget to replace the Scenario with real name of your scenario.

4 WEB Step

Step is basically a HTTP request. Steps are executed in a pre-defined order.

Parameter Description

Name Name of the step.
For example: Login

URL URL
For example: www.zabbix.com

224

Parameter Description

Post HTTP POST variables, if any.
For example:
id=2345&userid={user}
If {user} is defined as a macro of the WEB scenario, it will be
replaced by its value when the step is executed.
The information will be sent as is, variables are not URL-encoded..

Timeout Do not spend more than Timeout seconds for execution of the step.
Actually this parameter defines maximum time for making
connection to the URL and maximum time for performing an HTTP
request. Therefore, Zabbix will not spend more than 2 x Timeout
seconds on the step.
For example: 15

Required The string (given as POSIX extended regular expression) must exist
in retrieved content.
Otherwise this step fails. If empty, any content will be accepted.
For example: Homepage of Zabbix

Status codes List of HTTP status codes to be considered as success. If retrieved
status code is not in the list, this step fails.
If empty, any status code is accepted.
For example: 200,210

As soon as a step is created, Zabbix automatically adds the following items for monitoring and links them to the selected application.
Actual scenario and step names will be used instead of ”Scenario” and ”Step” respectively.

Item Description

Download speed for step
’Step’ of scenario ’Scenario’

This item will collect information about download speed (bytes per second) of the step.
Item key: web.test.in[Scenario,Step,bps]
Type: float

Response time for step
’Step’ of scenario ’Scenario’

This item will collect information about response time of the step in seconds. Response
time is counted from the beginning of the request until all information has been
transferred.
Item key: web.test.time[Scenario,Step,resp]
Type: float

Response code for step
’Step’ of scenario ’Scenario’

This item will collect response codes of the step.
Item key: web.test.rspcode[Scenario,Step]
Type: integer

Note:
Web monitoring items are added with 30 day history retention and 90 day trend retention periods.

These items can be used to create triggers and define notification conditions.

Example 1

Trigger ”Zabbix GUI login is too slow”

The trigger expression can be defined as:

{zabbix: web.test.time[ZABBIX GUI,Login,resp].last(0)}>3

5 Real life scenario

Let’s use Zabbix Web Monitoring to monitor the web interface of Zabbix. We want to know if it is available, provides the right
content and how quickly it works. First we must log in with our user name and password.

Step 1

Add a new host application.

225

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

Go to Configuration → Hosts, then click on Applications next to the host you want to use for web monitoring. In the application
section click on Create application.

This step is not required if you already have a suitable application. You may also want to create a host if one does not exist.

Step 2

Add a new web scenario.

We will add a scenario to monitor the web interface of Zabbix. The scenario will execute a number of steps.

Go to Configuration → Web, select the host in the dropdown, then click on Create scenario.

In the new scenario form, click on Select next to the Application field to choose the application we just created.

Note that we also create two macros, {user} and {password}.

Step 3

Define steps for the scenario.

Click on Add button in the Steps section to add individual steps.

Web scenario step 1

We start by checking that the first page responds correctly, returns with HTTP response code 200 and contains text ”SIA Zabbix”.

226

When done configuring the step, click Add.

Web scenario step 2

We continue by logging in to the Zabbix frontend, and we do so by reusing the macros (variables) we defined on the scenario level,
{user} and {password}.

Attention:
Note that Zabbix frontend uses JavaScript redirect when logging in, thus first we must log in, and only in further steps we
may check for logged-in features. Additionally, the login step must use full URL to index.php file.

All the post variables must be on a single line and concatenated with & symbol. Example string for logging into Zabbix frontend:

name=Admin&password=zabbix&enter=Enter

If using the macros as in this example, login string becomes:

227

name={user}&password={password}&enter=Enter

Web scenario step 3

Being logged in, we should now verify the fact. To do so, we check for a string that is only visible when logged in - for example,
Profile link appears in the upper right corner.

Web scenario step 4

Now that we have verified that frontend is accessible and we can log in and retrieve logged-in content, we should also log out -
otherwise Zabbix database will become polluted with lots and lots of open session records.

Complete configuration of steps

A complete configuration of web scenario steps should look like this:

228

Step 4

Save the finished web monitoring scenario.

The list of applications and linked scenarios will appear in Monitoring → Web:

Click on the scenario name to see more detailed statistics:

229

10 Log File Monitoring

overview how_it_works

1 Overview

Zabbix can be used for centralized monitoring and analysis of log files with/without log rotation support. Notifications can be used
to warn users when a log file contains certain strings or string patterns.

2 How it works

Monitoring of log files requires Zabbix Agent running on a host. An item used for monitoring of a log file must have type Zabbix
Agent (Active), its value type must be Log and key set to log[file,<pattern>,<encoding>,<max lines>] or logrt[path to log file with
filename format,<pattern>,<encoding>,<max lines>].

For example:

log["/home/user/file.log","pattern_to_match","UTF-8",100]
or
logrt["/home/user/filelog_.*_[0-9]{1,3}","pattern_to_match","UTF-8",100]

The last one will collect data from files such ”filelog_abc_1” or ”filelog__001”.

230

Important notes:

• The server and agent keep a trace of the monitored log’s size and last modification time (for logrt) in two counters.
• The agent starts reading the log file from the point it stopped the previous time.
• The number of bytes already analyzed (the size counter) and the last modification time (the time counter) are stored in the
Zabbix database and are sent to the agent, to make sure it starts reading the log file from this point.

• Whenever the log file becomes smaller than the log size counter known by the agent, the counter is reset to zero and the
agent starts reading the log file from the beginning taking the time counter into account.

• All files matching the filename format in the provided directory are analyzed every cycle the agent tries to get the next line
from the log (for logrt).

• If there are several matching files with the same last modification time in the directory, then the agent will read lexicograph-
ically the smallest one.

• Zabbix Agent processes new records of a log file once per Update interval seconds.
• Zabbix Agent does not send more than maxlines of a log file per second. The limit prevents overloading of network and
CPU resources and overrides the default value provided for MaxLinesPerSecond parameter in the configuration file of the
agent.

• Special note for ”\” path separators: if file_format is ”file\.log”, then there should not be directory ”file”, since it is not possible
to unambiguously define whether ”.” is escaped or is the first symbol of the file name.

11 Discovery

goals overview how_it_works auto-discovery_rule real_life_scenario

1 Goals

There are several goals of Zabbix network discovery module:

• Simplify deployment

Network discovery can be used to significantly simplify and speed up Zabbix deployment. It also makes possible creation of user
friendly appliances.

• Simplify administration

Properly configured network discovery can simplify administration of Zabbix system a lot.

• Support of changing environments

Network discovery makes possible use of Zabbix in rapidly changing environments with no excessive administration.

2 Overview

Zabbix provides effective and very flexible network discovery functionality. Zabbix network discovery is based on the following
information:

• IP ranges
• Availability of external services (FTP, SSH, WEB, POP3, IMAP, TCP, etc)
• Information received from Zabbix agent
• Information received from SNMP agent

It does NOT provide:

• Discovery of network topology

Every service and host (IP) checked by Zabbix network discovery module generates events which may be used to create rules for
the following actions:

• Generating user notifications
• Adding and removing hosts
• Enabling and disabling hosts
• Adding hosts to a group
• Removing hosts from a group

231

• Linking hosts to a template
• Unlinking hosts from a template
• Executing remote scripts

The actions can be configured to respect host or service uptime and downtime.

Warning:
If Zabbix server is compiled with IPv6 support and fping6 utility is missing, ICMP checks will fail for IPv4 devices as well.
Only since Zabbix 1.8.2 IPv4 addresses are still processed by located fping.

3 How it works

Network discovery basically consists of two phases: Discovery and Actions.

First, we discover a host or a service, and generate discovery event or several events.

Then we process the events and apply certain actions depending of type of discovered device, IP, its status, up/down time, etc.

3.1 Discovery

Zabbix periodically scans IP ranges defined in network discovery rules. Frequency of the check is configurable for each rule
individually.

Note that one discovery rule will always be processed by a single discoverer process. The IP range will not be split between multiple
discoverer processes.

Each rule defines set of service checks to be performed for IP range.

Events generated by network discovery module have Event Source ”Discovery”.

Zabbix generates the following events:

Event When generated

Service Up Every time Zabbix detects active service.
Service Down Every time Zabbix cannot detect service.
Host Up If at least one of the services is UP for the IP.
Host Down If all services are not responding.
Service Discovered If the service is back after downtime or discovered for the first time.
Service Lost If the service is lost after being up.
Host Discovered If host is back after downtime or discovered for the first time.
Host Lost If host is lost after being up.

3.2 Actions

For a description of all conditions available for network discovery based events see action conditions.

For a description of all operations available for network discovery based events see operations.

4 Network discovery rule

Network discovery rule is a rule used by Zabbix to discover hosts and services.

Parameters of network discovery rule:

Parameter Description

Name Name of the rule. For example, ”Local network”.

232

Parameter Description

IP range Range of IP addresses for discovery. It may have the following
formats:
Single IP: 192.168.1.33
Range of IP addresses: 192.168.1.1-255
IP mask: 192.168.4.0/24
supported IP masks:
/16 - /30 for IPv4 addresses
/112 - /128 for IPv6 addresses
List:
192.168.1.1-255,192.168.2.1-100,192.168.2.200,192.168.4.0/24

Delay (in sec) This parameter defines how often Zabbix should execute this rule.
Checks Zabbix will use this list of checks for discovery of hosts and

services.
List of supported checks: SSH, LDAP, SMTP, FTP, HTTP, POP, NNTP,
IMAP, TCP, ZABBIX Agent, SNMPv1 Agent, SNMPv2 Agent, SNMPv3
Agent
Parameter Ports may be one of following:
Single port: 22
Range of ports: 22-45
List: 22-45,55,60-70

Device uniqueness criteria Uniqueness criteria may be:
IP address (no processing multiple-IP devices)
One of discovery check of the rule. Will be based either on a
SNMP or Zabbix Agent check.

Status Active – the rule is active and will be execute by Zabbix server
Disabled – the rule is not active. It won’t be executed.

Warning:
Each IP address should be included only once, having multiple rules for a single IP address can have unexpected behaviour
such as having deadlocks and/or duplicate hosts in the database. The same could happen if two hosts having the same
DNS name are included in separate discovery rules.

5 Real life scenario

Suppose we would like to set up network discovery for local network having IP range of 192.168.1.1-192.168.1.255. In our scenario
we want to:

• discover those hosts that have Zabbix Agent running
• run discovery every 10 minutes
• add host to monitoring if host uptime is more than 1 hour
• remove hosts if host downtime is more than 24 hours
• use Template_Windows for Windows hosts
• use Template_Linux for Linux hosts
• add Linux hosts to ”Linux servers” group
• add Windows hosts to ”Windows servers” group

Step 1

Define a network discovery rule for our IP range (Configuration → Discovery → Create rule button)

233

Zabbix will try to discover hosts in IP range of 192.168.1.1-192.168.1.255 by connecting to Zabbix Agents and getting value from
system.uname key. A value received from an agent can be used to apply different actions for different operating systems. For
example, link Windows servers to Template_Windows, Linux servers to Template_Linux.

The rule will be executed every 10 minutes (600 seconds).

When the rule is added, Zabbix will automatically start discovery and generation of discovery-based events for further processing.

Step 2

Define an action for adding newly-discovered Linux servers to the respective group/template. (Configuration → Actions → Create
Action button)

The action will be activated if:

• ”Zabbix agent” service is ”Up”
• value of system.uname (the Zabbix Agent’s key we used in rule definition) contains ”Linux”
• Uptime is more than 1 hour (3600 seconds)

The action will execute the following operations:

• add the newly discovered host to ”Linux servers” group (also add host if it wasn’t added previously)
• link host to ”Template_Linux” template. Zabbix will automatically start monitoring the host using items and triggers from
”Template_Linux”.

234

Step 3

Define an action for adding newly-discovered Windows servers to the respective group/template.

Step 4

Define an action for removing lost servers.

A server will be removed if ”Zabbix agent” service is ”Down” for more than 24 hours (86400 seconds).

12 Advanced SNMP Monitoring

special_mibs dynamic_indexes

1 Special OIDs

Some of the most used SNMP OIDs are translated automatically to a numeric representation by Zabbix. For example, ifIndex is
translated to 1.3.6.1.2.1.2.2.1.1, ifIndex.0 is translated to 1.3.6.1.2.1.2.2.1.1.0.

The table contains list of the special OIDs.

235

Special OID Identifier Description

ifIndex 1.3.6.1.2.1.2.2.1.1 A unique value for each interface.
ifDescr 1.3.6.1.2.1.2.2.1.2 A textual string containing information

about the interface.This string should
include the name of the manufacturer,
the product name and the version of
the hardware interface.

ifType 1.3.6.1.2.1.2.2.1.3 The type of interface, distinguished
according to the physical/link
protocol(s) immediately ’below’ the
network layer in the protocol stack.

ifMtu 1.3.6.1.2.1.2.2.1.4 The size of the largest datagram which
can be sent / received on the interface,
specified in octets.

ifSpeed 1.3.6.1.2.1.2.2.1.5 An estimate of the interface’s current
bandwidth in bits per second.

ifPhysAddress 1.3.6.1.2.1.2.2.1.6 The interface’s address at the protocol
layer immediately ‘below’ the network
layer in the protocol stack.

ifAdminStatus 1.3.6.1.2.1.2.2.1.7 The current administrative state of the
interface.

ifOperStatus 1.3.6.1.2.1.2.2.1.8 The current operational state of the
interface.

ifInOctets 1.3.6.1.2.1.2.2.1.10 The total number of octets received on
the interface, including framing
characters.

ifInUcastPkts 1.3.6.1.2.1.2.2.1.11 The number of subnetwork-unicast
packets delivered to a higher-layer
protocol.

ifInNUcastPkts 1.3.6.1.2.1.2.2.1.12 The number of non-unicast (i.e.,
subnetwork- broadcast or
subnetwork-multicast) packets
delivered to a higher-layer protocol.

ifInDiscards 1.3.6.1.2.1.2.2.1.13 The number of inbound packets which
were chosen to be discarded even
though no errors had been detected to
prevent their being deliverable to a
higher-layer protocol. One possible
reason for discarding such a packet
could be to free up buffer space.

ifInErrors 1.3.6.1.2.1.2.2.1.14 The number of inbound packets that
contained errors preventing them from
being deliverable to a higher-layer
protocol.

ifInUnknownProtos 1.3.6.1.2.1.2.2.1.15 The number of packets received via the
interface which were discarded because
of an unknown or unsupported protocol.

ifOutOctets 1.3.6.1.2.1.2.2.1.16 The total number of octets transmitted
out of the interface, including framing
characters.

ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17 The total number of packets that
higher-level protocols requested be
transmitted, and which were not
addressed to a multicast or broadcast
address at this sub-layer, including
those that were discarded or not sent.

ifOutNUcastPkts 1.3.6.1.2.1.2.2.1.18 The total number of packets that
higher-level protocols requested be
transmitted, and which were addressed
to a multicast or broadcast address at
this sub-layer, including those that were
discarded or not sent.

236

Special OID Identifier Description

ifOutDiscards 1.3.6.1.2.1.2.2.1.19 The number of outbound packets which
were chosen to be discarded even
though no errors had been detected to
prevent their being transmitted. One
possible reason for discarding such a
packet could be to free up buffer space.

ifOutErrors 1.3.6.1.2.1.2.2.1.20 The number of outbound packets that
could not be transmitted because of
errors.

ifOutQLen 1.3.6.1.2.1.2.2.1.21 The length of the output packet queue
(in packets).

2 Use of dynamic indexes

Note:
Dynamic indexes are supported since Zabbix version 1.5.

A special syntax for item OID can be used in order to deal with dynamic data (random IDs of network interfaces, etc). The syntax:

<base OID of data>[”index”,”<base OID of index>”,”<string to search for>”]

For example, to get the ifInOctets value for the GigabitEthernet0/1 interface on a Cisco device, use the following OID:

ifInOctets["index","ifDescr","GigabitEthernet0/1"]

Parameter Description

base OID of data Base OID to use for data retrieval.
index Method of processing. Currently one method is supported

index – search for index and append it to the base OID
base OID of index The OID will be used to make a lookup for the string.
string to search for The string is used for exact match with a value when doing lookup.

Case sensitive.

Another example, getting memory usage of apache process:

HOST-RESOURCES-MIB::hrSWRunPerfMem["index","HOST-RESOURCES-MIB::hrSWRunPath", "/usr/sbin/apache2"]
...

HOST-RESOURCES-MIB::hrSWRunPath.5376 = STRING: "/sbin/getty"
HOST-RESOURCES-MIB::hrSWRunPath.5377 = STRING: "/sbin/getty"
HOST-RESOURCES-MIB::hrSWRunPath.5388 = STRING: "/usr/sbin/apache2"
HOST-RESOURCES-MIB::hrSWRunPath.5389 = STRING: "/sbin/sshd"
...

Now we have index, 5388. The index will be appended to the Data OID in order to receive value we are interested in:

HOST-RESOURCES-MIB::hrSWRunPerfMem.5388 = INTEGER: 31468 KBytes

Note:
Dynamic indexes are cached since Zabbix version 1.6.3.

Note:
Using dynamic indexes leads to more SNMP queries in Zabbix versions up to 1.7. Dynamic index lookup and data retrieval
is performed in single connection since Zabbix version 1.7.

237

13 Monitoring of IPMI devices

goals ipmi_parameters ipmi_actions

1 Goals

There are several goals of Zabbix IPMI monitoring:

• Monitoring of health and availability of IPMI devices
• Remote IPMI based management functions

Remote restart, shutdown, halt, and other commands can be executed either automatically or manually from Zabbix front-end.

2 IPMI parameters

Zabbix IPMI monitoring works only for devices having IPMI support (HP iLO, Sun hardware, etc).

In order to use IPMI monitoring, a host must be configured to process IPMI commands. IPMI agent’s IP address, port number, user
name and password must be configured properly.

See configuration of hosts for more details.

3 IPMI actions

Two types of actions can be defined:

• automatic actions, which are executed automatically
• IPMI scripts, can be executed manually from Zabbix GUI

See corresponding sections of the Manual for more details.

14 Use of Proxies

Zabbix Proxies may greatly simplify maintenance of Zabbix environment and increase performance of the central Zabbix server.

Also, use of Zabbix Proxies is the easiest way of implementing centralized and distributed monitoring, when all Agents and Proxies
report to one Zabbix server and all data is collected centrally.

why_use_proxy proxy_vs_node configuration

1 Why use Proxy?

Zabbix Proxy can be used for many purposes:

• Offload Zabbix Server when monitoring thousands of devices
• Monitor remote locations
• Monitor locations having unreliable communications
• Simplify maintenance of distributed monitoring

238

2 Proxy v.s. Node

When making a choice between use of a Proxy or a Node, several considerations must be taken into account.

LightweightGUI

Works
indepen-
dently

Easy
mainte-
nance

Automatic
DB
creation1

Local
adminis-
tration

Ready for
embedded
hardware

One way
TCP con-
nections

Centralised
configura-
tion

Generates
notifica-
tions

NodeNo Yes Yes No No Yes No Yes No Yes
ProxyYes No Yes Yes Yes No Yes Yes Yes No

Note:
[1] Automatic DB creation feature only works with SQLite. Other databases require manual setup.

3 Configuration

3.1 Managing proxies

To open Zabbix proxy management, go to Administration → DM and select Proxies in the dropdown in the upper right corner. Here
you can create, edit and delete proxies. For each proxy the last time when it contacted the server (either to send in new data or
because of the heartbeat connection) is displayed.

Opening the proxy properties form allows you to select the hosts that should be monitored by that proxy.

Attention:
Zabbix proxy must use a separate database. Pointing it to the Zabbix server database will break the configuration.

3.2 Monitoring a host by a proxy

Each host can be monitored either by Zabbix Server or by Zabbix Proxy. Monitoring by a proxy is set up in Configuration → Hosts
→ open the host definition form:

If a host is configured to be monitored by a Proxy, the Proxy will perform gathering of performance and availability data for the
host. The data will be collected by the Proxy and sent to Zabbix Server for further processing.

239

15 Distributed Monitoring

Zabbix can be configured to support hierarchical distributed monitoring.

goals overview configuration platform_independence configuring_single_node switching_between_nodes data_flow performance

1 Goals

There are several goals of the distributed monitoring:

• Get control of whole monitoring from a single or several locations

Zabbix administrator may control configuration of all Nodes from a single Zabbix WEB front-end.

• Hierarchical monitoring

This is for monitoring of complex multi-level environments.

• Monitor large complex environments

This is especially useful when monitoring several geographical locations.

• Offload the overhead from busy Zabbix server

Monitoring thousands of hosts using single Zabbix server? This may be for you!

2 Overview

Zabbix provides effective and reliable way of monitoring distributed IT infrastructure. Configuration of the whole distributed setup
can be done from a single location via common WEB interface.

Zabbix supports up-to 1000 (one thousand) Nodes in a distributed setup. Each Node is responsible for monitoring of its own
Location. Node can be configured either locally or by its Master node which has a copy of configuration data of all Child Nodes.
Configuration of Child Nodes can be done in off line mode, i.e. when there are no connectivity between Master and Child Node.

Hierarchical distributed monitoring allows having tree-like structure of Nodes. Each Node reports to its Master Node only.

All Nodes may work even in case of communication problems. Historical information and events are stored locally. When commu-
nication is back, Child Nodes will optionally send the data to Master Node.

New Nodes can be attached to and detached from the Zabbix distributed setup without any loss of functionality of the setup. No
restart of any Node required.

Each Node has its own configuration and works as a normal Zabbix Server.

3 Configuration

3.1 Configuration of Nodes

Node configuration is performed in Administration → DM section.

240

Parameters of a Node:

Parameter Description

Name Unique node name.
Id Unique Node ID.
Type Local – Local node

Remote – Remote node
Time zone Time zone of the Node. Zabbix automatically converts time stamps

to local timezone when transferring time related data across nodes.
IP Node IP address. Zabbix trapper must be listening on this IP

address.
Port Node Port number. Zabbix trapper must be listening on this port

number. Default is 10051.
Do not keep history older than (in days) For non local historical data only. Zabbix won’t keep history of the

node longer than N days.
Do not keep trends older than (in days) For non local trend data only. Zabbix won’t keep trends of the node

longer than N days.

3.2 Simple configuration

Our simple configuration consists of a Central Node and a Child Node.

Central Node will have total control over configuration of Child Node. Child Node will report to central node events, history and
trends.

Central Node will have NodeID=1, while Child Node’s NodeID=2.

Central Node IP: 192.168.3.2
Child Node IP: 192.168.3.5

For Central Node

Step 1 Install Zabbix.

Follow standard installation instructions to create database, install Zabbix frontend and binaries.

Step 2 Setup NodeID in server configuration file.

In file zabbix_server.conf:

NodeID=1

Step 3 Convert database data.

Zabbix server has to be executed to convert unique IDs for use by first node.

cd bin
./zabbix_server -n 1 -c /etc/zabbix/zabbix_server.conf
Converting tables .. done.

Conversion completed.

Note:
This should be executed only once. This option is not required to start Zabbix server! Running Zabbix server with the -n
option does not start the server process.

Step 4 Configure Node parameters.

241

Step 5 Add child node.

Step 6 Start Master Node.

We should see NodeID in startup messages of server log file:

31754:20070629:150342 server #16 started [Node watcher. Node ID:1]

For Child Node

Step 1 Install Zabbix.

Follow standard installation instructions to create database, install Zabbix frontend and binaries.

Step 2 Setup NodeID in server configuration file.

In file zabbix_server.conf:

NodeID=2

Step 3 Convert database data.

Zabbix server has to covert all IDs to unique ones for the second node.

cd bin
./zabbix_server -n 2 -c /etc/zabbix/zabbix_server.conf
Converting tables .. done.

Conversion completed.

Note:
This should be executed only once. This option is not required to start Zabbix server!

Step 4 Configure Node parameters.

242

Step 5 Add master node.

Step 6 Start Child Node.

We should see NodeID in startup messages of server log file:

27524:20070629:150622 server #9 started [Node watcher. Node ID:2]

Does it work?

Selection of active nodes will appear automatically after nodes are defined:

243

Add host for monitoring for Child Node node and see events coming to Master Node:

3.3 More complex setup

The setup consists of seven Nodes. Each Node may be configured either locally (using local WEB interface) or from one of its
Master Nodes.

244

In this example, Riga (node 4) will collect events from all child nodes. It may also optionally collect historical information as well.

4 Platform independence

A node may use its own platform (OS, hardware) and database engine independently of other nodes. Also child nodes can be
installed without Zabbix frontend.

It may be practical to use less powerful hardware with Zabbix server running SQLite or MySQL MyISAM while nodes of higher levels
may use combination of a better hardware with MySQL InnoDB, Oracle or PostgreSQL backend.

5 Configuration of a single Node

Every Node in distributed environment must be properly configured to have a unique Node ID. Additional steps

Step 1

Follow standard installation procedure.

Follow standard installation procedure but do not start Zabbix Server. Zabbix front end must be installed and configured. Zabbix
database must be created and populated with data from data.sql.

Step 2

Configure zabbix_server.conf.

Add NodeID to Zabbix Server configuration file. NodeID must be a unique Node ID.

Step 3

Configure Master and Child Nodes.

Use Zabbix Frontend to configure details of Nodes having direct communication with the Node. Make sure that all IP addresses and
port numbers are correct.

245

Step 4

Start Zabbix Node.

Start Zabbix Server:

shell> ./zabbix_server

If everything was configured properly, Zabbix node will automatically start configuration and data exchange with all nodes in
distributed setup. You may see the following messages in server log file:

...
11656:20061129:171614 NODE 2: Sending data of node 2 to node 1 datalen 3522738
11656:20061129:171614 NODE 2: Sending data of node 2 to node 1 datalen 20624
...

6 Switching between nodes

When connecting to a node in distributed setup, a list of available child nodes is accessible in right-upper corner of the GUI. It
displays current node.

All information available in the GUI belongs to the selected node.

7 Data flow

7.1 Child to Master

Each Child Node periodically sends configuration changes, historical data and events to its Master Node.

Data Frequency

Configuration changes Every 120 seconds.
Events Every 10 seconds.
History Every 10 seconds.

Child Node will resend data in case of communication problems.

Trends are calculated locally based on received historical data.

Zabbix does not send operational data across the nodes. For example, item-related information (last check, last value, etc) exists
only locally.

Note:
Sending of Events and History can be controlled by configuration parameters NodeNoEvents and NodeNoHistory.

7.2 Master to Child

Each Master Node (a node with at least one child) periodically sends configuration changes to Child Nodes either directly or via
other Child Nodes directly connected to the Master Node.

Data Frequency

Configuration changes Every 120 seconds.

Zabbix does not send configuration of a Master Node to Childs.

7.3 Firewall settings

Inter-node communications use TCP protocol only.

Data flow Source port Destination port

Child to Master Any 10051

This is default port used by Zabbix trapper process.

246

8 Performance considerations

Any node requires more processing resources in a distributed setup. Master Node must be powerful enough to process and store
not only local data but also data received from its all Child Nodes. Network communications must be also fast enough for timely
transfer of new data.

16 Maintenance mode for Zabbix GUI

Zabbix GUI can be temporarily disabled in order to prohibit access to the front-end. This can be useful for protection of Zabbix
database from any changes initiated by users, thus protecting integrity of database.

Zabbix database can be stopped while Zabbix GUI is in the maintenance mode.

goals configuration how_it_looks_like

1 Goals

There are several goals of the maintenance mode:

• Protect Zabbix database from any changes initiated by users
• Perform database maintenance
• Inform users about reason of the maintenance work
• Users from a range of IP addresses will be able to work with the GUI during the maintenance mode normally
• Automatic return to normal mode when maintenance is over

2 Configuration

In order to enable maintenance mode, file conf/maintenance.conf.php must be modified to uncomment the following lines:

// Maintenance mode
define('ZBX_DENY_GUI_ACCESS',1);

// IP range, who allowed to connect to FrontEnd
$ZBX_GUI_ACCESS_IP_RANGE = array('127.0.0.1');

// MSG showed on Warning screen!
$_REQUEST['warning_msg'] = 'Zabbix is under maintenance.';

Parameter Details

ZBX_DENY_GUI_ACCESS Enable maintenance mode:
1 – maintenance mode is enabled, disabled
otherwise

ZBX_GUI_ACCESS_IP_RANGE Connections from these IP addresses will be allowed
with no maintenance mode.
For example:
192.168.1.1-255

warning_msg Informative message.

3 How it looks like

The following screen will be displayed while in maintenance mode. The screen is refreshed every 30 seconds in order to return to
normal state withiout user intervention when maintenance is over.

247

17 WEB Interface

There are several useful features of ZABBIX WEB interface:

• almost all screens support full-screen mode
• Ctrl + Mouse click make possible selection of multiple list elements (hosts, items, triggers, etc)
• sound alarm can be switched on and off in Status of Triggers view
• a new theme can be created to match your preferences or a company color schema

creating_own_theme configuration administration page_parameters

1 Creating your own theme

By default, Zabbix provides number of predefined themes. You may follow this step-by-step procedure in order to create your own.
Feel free to share result of your work with Zabbix community if you created something nice.

Step 1

Create your own CSS file.

The file can be based on existing CSS files coming with Zabbix. For example, you may take Black&Blue CSS file from
styles/css_bb.css and create new css_new.css.

Step 2

248

Place the new CSS file into correct location.

The file you created, css_new.css, into directory styles/.

Step 3

Edit include/forms.inc.php.

Open this file for editing, search for css_bb.css. There are two pieces of code that have to be amended.

Original code:

$cmbTheme = new CComboBox('theme',$theme);
$cmbTheme→AddItem(ZBX_DEFAULT_CSS,S_SYSTEM_DEFAULT);
$cmbTheme→AddItem('css_ob.css',S_ORIGINAL_BLUE);
$cmbTheme→AddItem('css_bb.css',S_BLACK_AND_BLUE);

Modified code:

$cmbTheme = new CComboBox('theme',$theme);
$cmbTheme→AddItem(ZBX_DEFAULT_CSS,S_SYSTEM_DEFAULT);
$cmbTheme→AddItem('css_ob.css',S_ORIGINAL_BLUE);
$cmbTheme→AddItem('css_bb.css',S_BLACK_AND_BLUE);
$cmbTheme→AddItem('css_new.css','MY_COOL_THEME');

Attention:
Note that original themes use constants, but the new example uses string (enclosed in apostrophes). You should not omit
apostrophes, as that will result in warnings. If you want your theme name to be translatable, you must add the constant
used for name in locale files - in that case make sure to prefix it with S_.

Step 4

You should also add your new theme to the config.php file:

$combo_theme→addItem('css_new.css','MY_COOL_THEME');

Step 5

Activate new theme.

In Zabbix GUI, you may either set this theme to be a default one or change your theme in user profile.

Enjoy new look and feel!

2 Configuration

2.1 Host groups

Configuration → Host groups

On this screen you can set up host groups and manage host group information.

A list of existing groups is displayed.

Displayed data:

249

Parameter Description

Name Host Group name.
Number of group members (hosts).
Members List of host group members.

Click on Create Group in the upper right corner of the screen if you wish to add a group. If you wish to edit an existing group, click
on its name in the list. A form is displayed where you can edit details of a host group.

Configuring a host group

Configuration parameters:

Parameter Description

Group name Unique host group name.
Hosts List of hosts, members of the group.

2.2 Templates

Configuration → Templates

On this screen you can set up and manage host templates.

A list of existing templates is displayed.

250

Displayed data:

Parameter Description

Name Template name.
Templates List of hosts linked to this template.

Click on Create Template in the upper right corner of the screen if you wish to add a template. If you wish to edit an existing
template, click on its name in the list. A form is displayed where you can edit details of a template.

Configuring a template

Configuration parameters:

251

Parameter Description

Name Unique template name.
Groups List of host groups the template belongs to.
New group New group can be created and linked to the template.

Ignored, if empty.
Hosts/Templates List of hosts/templates linked to the template.
Link with template Link template with one or more templates.

Information about items, triggers and graphs will be inherited from
the templates.

2.3 Hosts

Configuration → Hosts

On this screen you can set up hosts and manage host-related information.

A list of monitored hosts is displayed.

Displayed data:

Parameter Description

Name Unique host name.
DNS Host DNS name if used.
IP Host IP address if used.
Port Zabbix agent port number. Ignored if Zabbix agent items are not

used.
Templates List of first and second level (in parenthesis) templates linked to

the host.
Status Host Status:

Monitored - Host is active and being monitored
Disabled - Host disabled

Availability Agent (Zabbix, SNMP, IPMI) availability
With the default theme:
green icon - agent is up and running
grey icon - availability is not known
red icon - agent is not available

Error Any errors related to use of agent based checks.

Click on Create Host in the upper right corner of the screen if you wish to add a host. If you wish to edit an existing host, click on
its name in the host list. A form is displayed where you can edit details of a host.

252

Configuring a host

Configuration parameters:

Parameter Description

Name Unique host name.
Groups List of host groups the host belongs to.
New group New group can be created and linked to the host. Ignored, if empty.
DNS name Optional host DNS name.
IP address Optional host IP address.
Connect to Zabbix server will use this setting to retrieve data from agents:

DNS name - Connect to host DNS name
IP address - Connect to host IP (recommended)

Port Zabbix agent TCP port number. Default value is 10050.
Monitored by proxy The host can be monitored either by Zabbix server or one of

Zabbix proxies:
(no proxy) - host is monitored by Zabbix server
Proxy name – host is monitored by Zabbix proxy ”Proxy name”

Status Host status:
Monitored – Host is active, ready to be monitored
Not monitored – Host is not active, thus not monitored

Link with template Link host with one or more templates. Information about items,
triggers and graphs will be inherited from the templates.
Unlink – unlink from template, but preserve information about
items, triggers and graphs
Unlink and clear – unlink from template and remove all
information inherited from the template

Use IPMI Enable IPMI management functionality for this host.
IPMI IP address IP address of IPMI management device.
IPMI port Port number of the IPMI device.
IPMI privilege level Keep default setting here, User.
IPMI username User name for authentication.
IPMI password Password for authentication.
Use profile Enable or disable use of Host profile.
Use extended profile Enable or disable use of extended Host profile.

Both host and template definition forms include buttons ”Clone” and ”Full clone”.

”Clone” will add a new host or template based on the configuration parameters of the existing host/template and that will include
template linkage (thus also all templated item, trigger, graph and application information from those templates). ”Full clone” in
addition to that will also clone directly attached items, triggers, graphs and applications.

Note: When a new host is cloned, it will retain all template entities as they are originally on the template. Any changes to those
entities made on the existing host level (changed item interval, history period) will not be cloned to the new host; instead they will
be as on the template.

253

Mass-updating hosts

Mass update is a very effective way of changing attributes for a number of hosts at once.

To update some hosts, check them in the host list, then select ”Mass update” in the dropdown below the host list and click on ”Go”.
A form is displayed where you can select what attributes for the hosts you want to update.

2.3.1 Applications

Configuration → Hosts
Configuration → Templates

From the list of hosts or templates you can access the applications that are linked to a host or template by clicking in the Applications
column.

On the applications screen you can view and manage applications.

A list of applications linked to the host/template is displayed first. To view the other existing applications, select Group/Host display
options in the dropdown menus above.

Displayed data:

Parameter Description

Application Application name.

254

Parameter Description

Show Link to host items, also displays number of items (members of the
application).

Click on Create application in the upper right corner of the screen if you wish to add an application. If you wish to edit an existing
application, click on its name in the list. A form is displayed where you can edit details of an application.

Configuring an application

Configuration parameters:

Parameter Description

Name Application name. Must be unique within one host.
Hosts Host name the application is linked to.

2.3.2 Items

Configuration → Hosts
Configuration → Templates

From the list of hosts or templates you can access the items that are linked to a host or template by clicking in the Items column.

On the items screen you can view and manage items.

A list of existing items is displayed.

Displayed data:

Parameter Description

Description Item description (name).
Key Unique item key.
Update interval Frequency of the check.

255

Parameter Description

History Number of days Zabbix keeps detailed historical data.
Trends Number of days Zabbix keeps trends data.
Type Item type.
Status Item status.
Applications List of applications the item belongs to.
Error Any errors related to this item.

Click on Create Item in the upper right corner of the screen if you wish to add an item. If you wish to edit an existing item, click on
its name in the list. A form is displayed where you can edit details of an item.

Configuring an item

You can also create a new item from the existing one by pressing the Clone button and then saving under a different name.

Item attributes:

Parameter Description

Description Item description.
It may contain these macros:
$1,$2...$9 - first, second... ninth parameter of item key
For example: Free disk space on $1
If item key is “vfs.fs.size[/,free]”, the description will be
automatically changed to ”Free disk space on /”

Type Item type. See sections below for detailed description of each type.
Key Item key. The key must be unique within a single host.

The key value must be supported by the agent or Zabbix server if
key type is ’Zabbix Agent’, ’Zabbix Agent (active)’, ’Simple check’
or ’Zabbix aggregate’.

256

Parameter Description

Type of information Type of data as stored in the database after performing
conversions, if any.
Numeric (unsigned) – 64bit unsigned integer
Numeric (float) – floating point number
Character – character (string) data limited to 255 bytes
Log – log file. Must be set for keys log[].
Text – text of unlimited size

Data type Data type is used for integer items in order to specify the expected
data type:
Decimal – data in decimal format
Octal – data in octal format
Hexadecimal – data in hexadecimal format
Zabbix will automatically perform conversion to numeric.
This is supported starting from version 1.8.

Units If set, Zabbix will add the unit postfix to all received values.
Till Zabbix 1.8.2, default multiplier is 1024, and some units have
special processing:
b, bps - 1000 is 1K, special processing for bits.
Since Zabbix 1.8.2, default multiplier is 1000, and special
processing is used for units B, where multiplier is 1024.
For example, if units are set to B, Zabbix will display:
1 as 1B
1024 as 1KB
1536 as 1.5KB
unixtime – translated to ”yyyy.mm.dd hh:mm:ss”. To translate
correctly, the received value must be a Numeric (unsigned) type of
information.
uptime – translated to ”hh:mm:ss” or ”N days, hh:mm:ss”
s – translated to ”yyy mmm ddd hhh mmm sss ms”, parameter is
treated as number of seconds. Only 3 upper major units are
shown, like ”1m 15d 5h” or ”2h 4m 46s”. If there are no days to
display, only two levels are displayed - ”1m 5h” (no minutes,
seconds or milliseconds are shown). Will be translated to ”< 1 ms”
if the value is less than 0.001.

Use multiplier Pre-process received values.
Do not use - do not pre-process received values
Custom multiplier – multiply received values by value defined in
Custom multiplier
Use this option to convert values received in KB, MBps, etc into B,
Bps. Otherwise Zabbix cannot correctly set prefixes (K, M, G etc).

Custom multiplier Multiply all received value by this integer or floating-point value.
Update interval (in sec) Refresh this item every N seconds.

Note: If set to ’0’, the item will not be polled. However, if a flexible
interval also exists with a non-zero value, the item will be polled
during the flexible interval duration.

Flexible intervals List of exceptions for Update Interval. For example:
Delay: 10 Period: 1-5,09:00-18:00 – refresh set to 10 seconds for
working hours. Otherwise default update interval will be used.
If multiple flexible intervals overlap, the smallest Delay value is
used for the overlapping period.
See Time period specification page for description of Period format.
Note: If set to ’0’, the item will not be polled during the flexible
interval duration and will resume polling according to the Update
interval once the flexible interval period is over.

Keep history (in days) Keep detailed history for N days in the database. Older data will be
removed by Housekeeper.

Keep trends (in days) Keep aggregated (hourly min, max, avg, count) detailed history for
N days in the database. Older data will be removed by
Housekeeper.

257

Parameter Description

Status Active - active (normal) status. Zabbix will process this item.
Disabled – item is disabled. This item will not be processed.
Not supported – item is not supported by Zabbix or SNMP agent.
This item will not be processed, however Zabbix may try to
periodically set status of such items to Active if configured.

Store value As is – no pre-processing
Delta (speed per second) – evaluate value as
(value-prev_value)/(time-prev_time), where
value – current value
value_prev – previously received value
time – current timestamp
prev_time – timestamp of previous value
This setting is extremely useful to get speed per second based on
constantly growing value.
Note: If current value is smaller than the previous value, Zabbix
discards that difference (stores nothing) and waits for another
value. This helps to work correctly with, for instance, a wrapping
(overflow) of 32-bit SNMP counters.
Delta (simple change) – evaluate as (value-prev_value), where
value – current value
value_prev – previously received value

Show value Apply value mapping to this item. Value mapping does not change
received values, it is for displaying data only.
It works with integer items only.
For example, ”Windows service states”.

Log time format Available for items of type Log only. Supported placeholders:
* y: Year (0001-9999)
* M: Month (01-12)
* d: Day (01-31)
* h: Hour (00-23)
* m: Minute (00-59)
* s: Second (00-59)
Leaving this field blank means don’t try to parse the timestamp.
For example, consider the following line from the Zabbix agent log
file:
” 23480:20100328:154718.045 Zabbix Agent started. Zabbix 1.8.2
(revision 11211).”
It begins with six character positions for PID, followed by date,
time, and the rest of the line.
Log time format for this line would be
”pppppp:yyyyMMdd:hhmmss”.
Note that ”p” and ”:” chars are just placeholders and can be
anything but ”yMdhms”.

Applications Link item to one or more applications.

Up to version 1.8.1 Zabbix supports the following unit prefixes:

• K (Kilo);
• M (Mega);
• G (Giga);
• T (Tera);

Since version 1.8.2, additionally supported prefixes include:

• P (Peta);
• E (Exa);
• Z (Zetta);
• Y (Yotta);

See more details about items in other sections of the Manual.

** Unit blacklist **

258

By default, specifying a unit for an item will result in multiplier prefix being added - for example, value 2048 with unit B would be
displayed as 2KB. For a pre-defined, hardcoded list of units this is prevented:

• ms
• RPM
• rpm
• %

Note that both lowercase and uppercase rpm (rpm and RPM) strings are blacklisted.

Mass-updating items

Mass update is a very effective way of changing attributes for a number of items at once.

To update some items, check them in the item list, then select ”Mass update” in the dropdown below the item list and click on
”Go”. A form is displayed where you can select what attributes for the items you want to update.

Check any parameter that you would like to change, enter a new value for it and press ”Save”.

Copy selected to...

The function makes it possible to copy a selected item to a number of hosts.

To do so, mark the item in the list, then select ”Copy selected to...” in the dropdown below the list and click on ”Go”. A form is
displayed where you can select the hosts to copy items to.

259

Select the hosts you would like to copy the items to and press ”Copy”.

2.3.3 Triggers

Configuration → Hosts
Configuration → Templates

From the list of hosts or templates you can access the triggers that are linked to a host or template by clicking in the Triggers
column.

On the triggers screen you can view and manage triggers.

A list of existing triggers is displayed.

260

Displayed data:

Parameter Description

Severity Coloured trigger severity.
Status Trigger status. Note that Disabled triggers are hidden by default.
Name Trigger name.
Expression Trigger expression.

Click on Create Trigger in the upper right corner of the screen if you wish to add a trigger. If you wish to edit an existing trigger,
click on its name in the list. A form is displayed where you can edit details of a trigger.

Configuring a trigger

You can also create a new trigger from the existing one by pressing the Clone button and then saving under a different name.

Trigger attributes:

261

Parameter Description

Name Trigger name. The name may contain macros.
Expression Logical expression used for calculation of trigger state.
The trigger depends on List of triggers the trigger depends on.
New dependency Add new dependency.
Event generation Normal – events are generated normally, on trigger status change

Normal + Multiple PROBLEM events (Multiple TRUE events
in 1.8.2 and before) – events are also generated on every
PROBLEM evaluation of the trigger

Severity Trigger severity.
Comments Text field used to provide more information about this trigger. May

contain instructions for fixing specific problem, contact detail of
responsible staff, etc.

URL If not empty, the URL is used in the screen ’Status of Triggers’.
Disabled Trigger can be disabled if required.

See also more information about triggers.

Mass-updating triggers

Mass update is a very effective way of changing attributes for a number of triggers at once.

To update some triggers, check them in the list, then select ”Mass update” in the dropdown below the trigger list and click on ”Go”.
A form is displayed where you can select what attributes for the triggers you want to update.

Check any parameter that you would like to change, enter a new value for it and press ”Save”.

Copy selected to...

The function makes it possible to copy a selected trigger to a number of hosts.

To do so, mark the trigger in the list, then select ”Copy selected to...” in the dropdown below the list and click on ”Go”. A form is
displayed where you can select the hosts to copy triggers to.

262

Select the hosts you would like to copy triggers to and press ”Copy”.

2.3.4 Graphs

Configuration → Hosts
Configuration → Templates

From the list of hosts or templates you can access the graphs that are linked to a host or template by clicking in the Graphs column.

On the graphs screen you can manage custom graphs.

A list of existing custom graphs is displayed.

Displayed data:

Parameter Description

Name Graph name.
Width Graph width in pixels.
Height Graph height in pixels.
Graph type Graph type:

Normal
Stacked
Pie
Exploded

Configuring a graph

Click on Create Graph in the upper right corner of the screen in the graph list if you wish to add a graph. If you wish to edit an
existing graph, click on its name in the list. A form is displayed where you can configure a graph.

263

You can also create a new graph from the existing one by pressing the Clone button and then saving under a different name.

Graph attributes:

Parameter Description

Name Unique graph name.
Width Graph width in pixels.
Height Graph height in pixels.
Graph type Graph type:

Normal – normal graph, values displayed as lines.
Stacked – stacked graph.
Pie – pie graphs.
Exploded – exploded pie graph.

Show working time If selected, non-working hours will be shown with gray background.
Not available for pie and exploded pie graphs.

Show triggers If selected, simple triggers will be displayed as red lines. Not
available for pie and exploded pie graphs.

Percentile line (Left) Display percentile for left Y axis. Normally used for displaying 95%
percentile. Only available for normal graphs.

Percentile line (Right) Display percentile for right Y axis. Normally used for displaying
95% percentile. Only available for normal graphs.

Y axis MIN value Type of Y axis:
Calculated – Y axis value will be automatically calculated
Calculated [min=0] – Y min value is set to 0, maximum value will
be automatically calculated.
Fixed – fixed min and max value for Y axis. Not available for pie
and exploded pie graphs.

Y axis MAX value Type of Y axis:
Calculated – Y axis value will be automatically calculated
Calculated [min=0] – Y min value is set to 0, maximum value will
be automatically calculated.
Fixed – fixed min and max value for Y axis. Not available for pie
and exploded pie graphs.

3D view Enable 3D style. For pie and exploded pie graphs only.
Legend Display legend. For pie and exploded pie graphs only.
Items List of graph elements (items) to be displayed for this graph.

Graph element:

264

Attributes of a graph element:

Parameter Description

Parameter Selection of host item, which will be displayed.
Type Type (only available for normal graphs):

Simple
Aggregated

Function What values will be displayed when more than one value exists for
a single pixel (X-coordinate):
all – all (minimum, average and maximum)
min – minimum only
avg – average only
max – maximum only

Draw style Draw style (only available for normal graphs; for stacked graphs
filled region is always used):
Line – draw lines
Filled region – draw filled region
Bold line – draw bold lines
Dot – draw dots
Dashed line – draw dashed line

Colour RGB colour in HEX notation.
Aggregated periods count
Y axis side Which Y axis side the element is assigned to.
Sort order (0→100) Draw order, 0 will be processed first.

Below the graph preview is displayed. Note that it will not show any data for template items.

Note:
3 triggers is the hard-coded limit for the number of triggers displayed in the graph legend.

2.3.5 Template linkage

Warning:
Starting with Zabbix 1.8, template linkage to hosts can be managed in Configuration→Templates.

2.3.6 Proxies

Warning:
Starting with Zabbix 1.8, proxy management is available at Administration→DM.

2.4 Web monitoring

Configuration → Web

On this screen you can manage scenarios for web monitoring.

A list of the active scenarios is displayed.

265

Displayed data:

Parameter Description

Name Unique name of the web scenario.
Number of steps Number of individual steps (HTTP requests) the scenario consists

of.
Update interval Frequency of execution of the web scenario.
Status Status of the scenario:

Active - the scenario is active
Disabled - the scenario is disabled. Note that disabled scenarios
are not displayed by default in the main screen.

Click on Create scenario in the upper right corner of the screen if you wish to add a scenario. If you wish to edit an existing scenario,
click on its name in the list. A form is displayed where you can edit the parameters of a web scenario.

Configuring a web scenario

Configuration parameters:

Parameter Description

Application Host application the scenario is linked to.
Name Unique name of the web scenario.
Update interval (in sec) Frequency of execution of the web scenario.
Agent Client agent string. Zabbix will pretend that it is Firefox, MS

Explorer or any other application.
Useful when a website returns different content for different
browsers.

266

Parameter Description

Status Status of the scenario:
Active - the scenario is active
Disabled - the scenario is disabled. Note that disabled scenarios
are not displayed by default in the main screen.

Variables List of variables (macros) to be used in scenario steps (URL and
Post variables).
They have the following format:
{macro1}=value1
{macro2}=value2
For example:
username=Alexei
password=kj3h5kJ34bd
The macros can be referenced as {username} and {password}.
Zabbix will automatically replace them with actual values.

Steps List of steps executed by the scenario, displaying:
Name - step name
Timeout - timeout
URL - location to connect to
Required - required string
Status - step status

To add a web scenario step, click on the Add button next to Steps. A form will open where you can define the parameters of an
individual web scenario step.

Configuring a web scenario step

Configuration parameters:

Parameter Description

Name Unique step name.
URL URL to connect to and retrieve data. For example:

http://www.zabbix.com
https://www.google.com

Post List of POST variables. GET variables can be passed in the URL
parameter.

Timeout Zabbix will not spend more than the set amount of seconds on
processing the URL.

Required Required string. Retrieved content (HTML) must contain this string,
otherwise the step will fail.
If empty, no check is performed.

267

Parameter Description

Status codes List of expected HTTP codes. If Zabbix gets a code which is not in
the list, the step will fail.
If empty, no check is performed.
For example: 200,201,210-299

See also this section for more information about web monitoring.

2.5 Actions

Configuration → Actions

On this screen you can set up and manage actions.

A list of existing actions is displayed. Actions are displayed by the event source: Triggers/Discovery/Auto registration. Use the
dropdown menu in the upper right corner to switch between various sources.

Displayed data:

Parameter Description

Name Action name.
Conditions List of conditions for this action.
Operations List of operations for execution.
Status Status of the action.

Click on Create Action in the upper right corner of the screen if you wish to add an action. If you wish to edit an existing action,
click on its name in the host list. A form is displayed where you can edit details of an action.

Configuring an action

More configuration options are available if escalation is enabled:

268

See more details about configuration of actions, conditions and operations in other sections of the Manual.

2.6 Screens

Configuration → Screens

On this screen you can set up and manage screens.

A list of existing screens is displayed.

Parameter Description

Name Screen name.
Dimension (cols x rows) Screen size, number of columns and rows.

Click on Create Screen in the upper right corner of the screen if you wish to add a screen. If you wish to edit the elements of an
existing screen, click on its name in the list. If you wish to edit high-level information of an existing screen, click on the Edit button.
A form is displayed where you can edit a screen.

Configuring a screen (high-level)

Screen high-level attributes:

269

Parameter Description

Name Unique screen name.
Columns Number of columns in the screen.
Rows Number of rows in the screen.

Configuring screen elements

You can configure what will be displayed in each element (cell) of a screen.

Click on a screen element (cell) and a form will be displayed where you can edit the attributes of an element.

Screen element attributes:

270

Parameter Description

Resource Information displayed in the cell:
Clock – digital or analog clock displaying current server or local
time
Data overview – latest data for a group of hosts
Graph – single custom graph
History of actions – history of recent actions
History of events – latest events
Hosts info – high level host related information
Map – single map
Plain text – plain text data
Screen – screen (one screen may contain other screens inside)
Server info – server high-level information
Simple graph – single simple graph
Triggers info – high level trigger related information
Triggers overview - status of triggers for a host group
URL – include content from an external resource

Horizontal align Possible values:
Center
Left
Right

Vertical align Possible values:
Middle
Top
Bottom

Column span Extend cell to a number of columns, same way as HTML column
spanning works.

Row span Extend cell to a number of rows, same way as HTML row spanning
works.

Dynamic elements

For some of the elements there is an extra option called Dynamic item. Checking this box at first does not to seem to change
anything.

However, once you go to Monitoring → Screens, you may realize that now you have extra dropdowns there for selecting the host.
Thus you have a screen where some elements display the same information while others display information depending on the
currently selected host.

The benefit of this is that you do not need to create extra screens just because you want to see the same graphs containing data
from various hosts.

Dynamic item option is available for several screen elements:

• Graphs (custom graphs)
• Simple graphs
• Plain text

Note:
Clicking on a dynamic graph opens it in full view; although with custom graphs that is supported with the default host
selected only.

2.7 Maps

Configuration → Maps

On this screen you can manage user-defined maps.

A list of existing maps is displayed.

271

Displayed data:

Parameter Description

Name Map name
Width Map width in pixels.
Height Map height in pixels.

Click on Create Map in the upper right corner of the screen if you wish to add a map. If you wish to edit the elements of an existing
map, click on its name in the list. If you wish to edit high-level information of an existing map, click on the Edit button. A form is
displayed where you can configure a user-defined map.

Configuring a map (high-level)

Map high-level attributes:

Parameter Description

Name Unique map name.
Width Map width in pixels.
Height Map height in pixels.
Background image Use background image:

No image - no background image (white background)
Image - selected image to be used as a background image. No
scaling is performed.

Icon highlighting Map elements will receive highlighting. If element has an active
trigger, round background will be used, having same colour as the
highest severity trigger. If element status is ”disabled” or ”in
maintenance”, square background will be used. This option is
available since Zabbix 1.8.

Mark elements on trigger status change Elements that have a trigger status recently changed will be
highlighted with markers. This option is available since Zabbix
1.8.3.

272

Parameter Description

Expand single problem If a map element (host, host group or another map) has a single
problem, this option controls whether problem (trigger) name is
printed, or problem count. If marked, problem name is used. This
option is available since Zabbix 1.8.1. For upgrades from previous
installations it is enabled by default on all maps.

Icon label type Label type used for all map icons:
Label - icon label only
IP address - IP address only
Element name - element name (for example, host name)
Status only - status only (OK or PROBLEM)
Nothing - no icon labels are displayed

Icon label location Display icon label on:
Bottom - bottom (under the icon)
Left - left side
Right - right side
Top - top of the icon

Configuring a map element

To add an element to the map, click on the ”+” next to Icon. The new element will appear at the top left corner of the map. Now
you can drag and drop it on a desired place on the map. By clicking on the element, a form is displayed where you can edit the
attributes of the element - its type, label, icon type etc.

Map element attributes:

Parameter Description

Type Type of the element:
Host - icon representing status of all triggers of the selected host
Map - icon representing status of all elements of a map
Trigger - icon representing status of a single trigger
Host group - icon representing status of all triggers of all hosts
belonging to
Image - an icon, not linked to any resource

273

Parameter Description

Label Icon label, any string.
Macros and multi-line string can be used in labels starting from
version 1.8

Label location Label location:
Default - Map’s default label location
Bottom - bottom (under the icon)
Left - left side
Right - right side
Top - top of the icon

Host Status of triggers for the selected host will be used.
Map Status of all elements for the selected map will be used.
Trigger Status of the selected trigger will be used.
Host group Status of all triggers for the selected host group will be used.
Icon (ok) Icon to be used when no problem exists.
Icon (problem) Icon to be used in case of problems (one or more).
Icon (unknown) Icon to be used if the selected host is in an unknown state.
Icon (disabled) Icon to be used if the selected host is disabled.
Coordinate X X coordinate for the map element.
Coordinate Y Y coordinate for the map element.
URL If set, the URL will be used when a user clicks on the screen

element.

Configuring a link

To link two elements in the map, select them both and click on the ”+” next to Link. A form is displayed where you can click on
the respective link and edit its attributes.

Map link attributes:

274

Parameter Description

Label Label that will be rendered on top of the link. You can use macros
here.

Element 1 First element that link connects.
Element 2 Second element that link connects.
Link status indicators List of triggers linked to the link. In case if a trigger has status

PROBLEM, its style is applied to the link.
Type (OK) Default link style:

Line - single line
Bold line - bold line
Dot - dots
Dashed line - dashed line

Colour (OK) Default link colour.

2.8 Discovery

Configuration → Discovery

On this screen you can manage discovery rules.

A list of existing discovery rules is displayed.

Displayed data:

Parameter Description

Name Name of discovery rule.
IP range Range of IP addresses affected by the discovery rule.
Delay Frequency in seconds.
Checks List of checks executed by the discovery rule.
Status Status of the discovery rule:

Active - the rule is active
Disabled - the rule is disabled

Click on Create rule in the upper right corner of the screen if you wish to add a discovery rule. If you wish to edit an existing
discovery rule, click on its name in the list. A form is displayed where you can edit the parameters of a discovery rule.

Configuring a discovery rule

275

Discovery rule attributes:

Parameter Description

Name Unique name of the discovery rule.
Discovery by proxy Who performs discovery:

(no proxy) - Zabbix server is doing discovery
proxy name - This proxy performs discovery

IP range Range of IP addresses for discovery. Format:
Single IP: 192.168.1.33
Range of IP addresses: 192.168.1.1-255
List: 192.168.1.1-255,192.168.2.1-100,192.168.2.200
CIDR notation: 192.168.1.0/24

Delay (seconds) This parameter defines how often Zabbix should execute this rule
in seconds.

Checks List of supported checks:
SSH, LDAP, SMTP, FTP, HTTP, POP, NNTP, IMAP, TCP, Zabbix agent,
SNMPv1 agent, SNMPv2 agent, SNMPv3 agent, ICMP ping

Port range may be: single port (22), a range of ports (22-45) or a
list (22-45,55,60-70)

Device uniqueness criteria If Zabbix will discover another device for which value, retrieved
from the check that is specified as Device uniqueness criteria, it
will be considered to be already discovered and new host will not
be added

Status Status of the discovery rule:
Active - the rule is active
Disabled - the rule is disabled

2.9 IT Services

Configuration → IT Services

On this screen you can manage IT Services.

A list of existing IT Services is displayed.

276

Displayed data:

Parameter Description

Service Service name.
Status calculation How the service updates its status.
Trigger Linked to a trigger:

none - no linkage
trigger name - linked to the trigger, thus depends on the trigger
status

Configuring an IT Service

IT Service attributes:

Parameter Description

Name Service name.
Parent service Parent service. For reference only, it cannot be changed.
Depends on List of child services the service depends on.

277

Parameter Description

Status calculation algorithm How to calculate status of the service:
Do not calculate - do not calculate service status
Problem, if it least one child has a problem - considered to be
a problem if at least one child service has a problem
Problem, if all children have problems - considered to be a
problem if all child services have problems

Calculate SLA Select to display SLA data.
Acceptable SLA (in %) SLA percentage for this service. It is used for reporting.
Service times By default, all services are expected to operate 24x7x365. Add

new service times to make exceptions.
New service time Service times:

One-time downtime - a single downtime. Service state within
this period does not affect SLA.
Uptime - service uptime
Downtime - Service state within this period does not affect SLA.

Link to trigger Services of the lowest level must be linked to triggers.
Sort order Display sort order, lowest comes first.

2.10 Export/Import

Warning:
Starting with Zabbix 1.8.3, this section has been removed. Import and export controls now are available in corresponding
configuration pages (hosts, templates, maps or screens).

2.10.1 Export

The screen is used to export hosts, items, triggers and graphs.

Export

The screen provides list of hosts and their elements for export.

Select elements you would like to export, then press ”Preview” or ”Export”.

Displayed data:

278

Parameter Description

Name Host name.
DNS Host DNS name.
IP IP address of Zabbix agent.
Port Zabbix agent port number.
Status Host status.
Templates Select to export template related information.
Items Select to export host items.
Triggers Select to export host triggers.
Graphs Select to export host graphs.

Preview page:

2.10.2 Import

The screen is used to perform XML import of host related data.

279

Import process options:

Parameter Description

Import file XML file to import.
Rules Set of rules for each type of element:

Existing - what to do if element already exists
Missing - what do to if element is missing
Possible actions:
Update - update existing element
Add - add element
Skip - do not process new data

Press ”Import” to import selected file.

3 Administration

3.1 General

3.1.1 GUI

This section allows to set Zabbix frontend related defaults.

Configuration parameters:

280

Parameter Description

Default theme Default theme for users who have not set a specific one in their
profiles

Dropdown first entry Whether first entry in element selection dropdowns should be all or
none.

Search/Filter elements limit Maximum amount of elements that will be available as search or
filter results.

Max count of elements to show inside table cell For entries that are displayed in a single table cell, no more than
configured here will be shown.

Event acknowledges This parameter defines if event acknowledges are activated in
Zabbix interface.

Show events not older (Days) This parameter defines for how many days event are displayed in
Status of Triggers screen. Default is 7 days.

Max count of events per trigger to show Maximum number of event to show for each trigger in Status of
Triggers screen. Default is 100.

3.1.2 Housekeeper

The Housekeeper is a periodical process which is executed by Zabbix Server. The process removes outdated information and
information deleted by user.

Configuration parameters:

Parameter Description

Do not keep actions older than (in days) This parameter defines how many days of executed actions
(emails, jabber, SMS, etc) history Zabbix will keep in the database.
Older actions will be removed.

Do not keep events older than (in days) This parameter defines how many days of events history Zabbix
will keep in the database. Older events will be removed.

Attention:
To apply changes of these parameters Zabbix server has to be restarted.

3.1.3 Images

List of images

281

Image definition

Zabbix images are stored in the database. There are two types of images:

• Icon
• Background

Icons are used in for displaying System Map elements.

Backgrounds are used as background images of System Maps.

Image attributes:

Parameter Description

Name Unique name of an image.
Type Either Icon or Background
Upload Name of local file (PNG, JPEG) to be uploaded to Zabbix

Note:
Note that you may upload image of any size, however images bigger than 1.5MB may not be displayed in maps. Increase
value of max_memory_size in php.ini if you have this problem.

3.1.4 Regular expressions

This section allows to create custom regular expressions for reusing elsewhere in Zabbix. A custom regular expression may consist
of multiple subexpressions, and it can be tested in this section by providing a test string. Results show status of each subexpression
and total custom expression status.

3.1.5 Value mapping

Value maps are used to create a mapping between numeric values and string representations.

Value mappings are used for representation of data in both Zabbix front-end and information sent by email/jabber/SMS/whatever.

For example, an item which has value ’0’ or ’1’ can use value mapping to represent the values in a human readable form:

• ’0’ => ’Not Available’
• ’1’ => ’Available’

Note:
Value mapping can be used only for items having type Unsigned integer.

Value mapping definition

282

Parameters of a value mapping:

Parameter Description

Name Unique name of set of value mappings.
Mapping Set of mappings.
New mapping Single mapping for addition.

3.1.6 Working time

Working time is system-wide parameter which defines working time.

Currently this is used for graphs only. Working time is displayed as a white background, while non-working time is displayed as
grey.

See Time period specification page for description of Working time format.

3.1.7 Other

Refresh unsupported items Some items may become unsupported due to errors in User Parameters or because of an item being
not supported by an agent.

Zabbix can be configured to periodically make unsupported items active.

Database watchdog Availability of Zabbix server depends on availability of back-end database. It cannot work without a
database.

Database watchdog, a special Zabbix server process, is created in order to alarm Zabbix administrators in case of disaster.

The watchdog will send notifications to a user group in case if the database is down. Zabbix server will not stop; it will wait until
the database is back again to continue processing.

Parameter Description

Refresh unsupported items (in sec) Zabbix will activate unsupported item every N seconds. If set to 0,
the automatic activation will be disabled.
Proxies check unsupported items every 10 minutes. This is not
configurable for Proxies.

Group for discovered hosts Hosts discovered by network discovery will be automatically placed
in the hostgroup, selected here.

User group for database down message User group for sending alarm message or ’None’.

283

Attention:
Until Zabbix version 1.8.2 database watchdog is supported for MySQL only. Since 1.8.2, it is supported for all databases.

Attention:
To apply changes of these parameters Zabbix server has to be restarted.

The Administration Tab is available to users of type Super Administrators only.

3.2 Authentication

3.2.1 HTTP

The screen can be used to enable Apache based (HTTP) authentication. The authentication will be used to check user names and
passwords. Note that an user must exist in Zabbix as well, however his Zabbix password will not be used.

Configuration parameters:

Parameter Description

HTTP Authentication Enabled This parameter defines if Apache based authentication is enabled.

Attention:
Be careful! Make sure that Apache authentication is configured and works properly before switching it on.

284

Note:
In case of Apache authentication all users (even with GUI Access set to Internal) will be authorised by Apache, not by
Zabbix!

3.2.2 LDAP

The screen can be used to enable external LDAP authentication. The authentication will be used to check user names and pass-
words. Note that an user must exist in Zabbix as well, however his Zabbix password will not be used.

Zabbix LDAP authentication works at least with Microsoft Active Directory and OpenLDAP.

Configuration parameters:

Parameter Description

LDAP Host Name of LDAP server. For example: ldap://ldap.zabbix.com
For secure LDAP server use ldaps protocol
ldaps://ldap.zabbix.com

Port Port of LDAP server. Default is 389.
For secure LDAP connection port number is normally 636.

Base DN ou=Users,ou=system
Search Attribute uid
Bind DN uid=Admin,ou=system
Bind Password Password for binding to the LDAP server.
LDAP Authentication Enabled Enable LDAP authentication.
Test Authentication -
Login Name of a test user. The user must exist in LDAP.

285

Parameter Description

User Password LDAP password of the test user. Zabbix will not activate LDAP
authentication if it is unable to authenticate the test user.

Note:
Some user groups can still be authorised by Zabbix. These groups must have GUI Access set to Internal.

3.3 Users

3.3.1 Users

The screen can be used to manage Zabbix users.

List of users

It provides list of users.

Displayed data:

Parameter Description

Alias User short-name, i.e. login name.
Name User name.
Surname User surname.

286

Parameter Description

User type User type, one of following:
Zabbix User
Zabbix Admin
Zabbix Super Admin

Groups List of all groups the user belongs to.
Is online? Is user online.
GUI Access Access to GUI, depends on settings of user groups:

System default – Zabbix, HTTP Authentication, LDAP
Authentication
Internal – the user is authenticated by Zabbix regardless of
system settings
Disabled – GUI access is restricted to this user

Status User status, depends on settings of user groups:
Enabled – the user is active
Disabled – the user is disabled. The user is ignored by Zabbix.

Actions

User configuration

The screen provides user details and gives control to change user attributes.

Configuration parameters:

287

Parameter Description

Alias User short-name, i.e. login name. Must be unique!
Name User name.
Surname User surname.
User type User type, one of following:

Zabbix User – access to Monitoring tab only.
Zabbix Admin – access to Monitoring and Configuration tabs.
Zabbix Super Admin – access to everything, including
Administration tabs.

Groups List of all groups the user belongs to.
Media List of all media for the user. The media are used by Zabbix for

sending notifications.
You can specify the time period when the media is active. See Time
period specification page for description of the format.
Note: Admin and Super Admin users can also edit their media
details by accessing the Profile section in the upper right corner of
the screen.

Language Language of Zabbix GUI.
Theme Defines how the GUI looks like:

System Default - use system settings
Original Blue – standard blue theme
Black & Blue – alternative theme

Auto-login (1 month) Enable if you want Zabbix to remember you. Browser cookies are
used for this.

Auto-logout (0 - disable) User will be logged out after N seconds if inactivity. Set it to 0 to
disable auto-logout.

URL (after login) Make Zabbix to transfer you directly to a specific URL after
successful login.

Refresh (in seconds) Refresh rate used for graphs, screens, plain text data, etc. Can be
set to 0 to disable.

Click on User Rights Show to display user rights. It is impossible to change user rights here, the rights depend on user group
membership! The information is available read-only.

288

3.3.2 User Groups

The screen can be used to manage Zabbix user groups.

List of user groups

It provides list of user groups.

289

Displayed data:

Parameter Description

Name Host group name. Must be unique.
User status Enabled – users are active

Disabled – all users of the group are disabled
GUI Access Displays how the users are authenticated.

System default – use default authentication
Internal – use Zabbix authentication
Disabled – access to Zabbix GUI is forbidden

Members List of group members

User group configuration

290

Configuration parameters:

Parameter Description

Group name Unique group name.
Users List of members of this group.
GUI Access How the users of the group are authenticated.

System default – use default authentication
Internal – use Zabbix authentication
Disabled – access to Zabbix GUI is forbidden

Users Status Status of group members:
Enabled – users are active
Disabled – users are disabled

Rights Three lists for different host permissions:
Read-write – host groups with read-write access
Read-only – host groups with read-only access
Deny – host groups with deny access

Click on User rights (Show) to see what permissions the user group has:

291

3.4 Media types

3.4.1 Media types

The screen can be used to manage Zabbix media types.

List of media types

Provides list of media types. Media type is a delivery method for user notifications.

Displayed data:

292

Parameter Description

Type Media type:
Email – email notification
SMS – SMS notifications sent using serial GSM modem
Jabber – Jabber notification
Script – script based notification

Description Name of the media.
Details Configuration details, depends on media type.

Media configuration

The screen provides user details and gives control to change media attributes.

Configuration parameters:

Parameter Description

Description Unique media name.
Type Media type:

Email – email notification
SMTP
Server
-
server
name
SMTP
Hello
–
Hello
string,
nor-
mally
do-
main
name
SMTP
Email
–
sender
email
ad-
dress

SMS – SMS notifications sent using serial GSM modem
GSM
Mo-
dem
- se-
rial
de-
vice
name
of
GSM
mo-
dem

293

Parameter Description

Jabber – Jabber notification
Jabber
Iden-
ti-
fier -
Jab-
ber
ID
Password
–
Pass-
word
of
the
Jab-
ber
ID

Script – script based notification
Script
name
-
name
of
the
cus-
tom
script

3.5 Scripts

The screen can be used to manage user-defined scripts. The scripts are executed on the Zabbix server even for hosts monitored
by a proxy.

List of scripts

Provides a list of scripts known to Zabbix. Depending on permission, Zabbix user may execute a script from the front-end by
clicking on host in these locations:

• Network maps
• Dashboard
• Status of triggers (Monitoring → Triggers)

Displayed data:

Parameter Description

Name Unique script name.
Command Command to be executed.
User group The script is available to members of the user group only.
Host group The script is available for hosts of the host group only.

294

Parameter Description

Host access Read - user must have read permission for the host to execute the
script
Write - user must have write permission for the host to execute
the script.

Script configuration

The screen provides script details and gives control to change script attributes.

Configuration parameters:

Parameter Description

Name Unique script name.
Command Full path to a command, which will be executed on user request.

The command will be run on the Zabbix server.
The following macros are supported here:
{HOST.CONN}
{HOST.DNS}
{IPADDRESS}
{HOSTNAME}
Example:
/bin/ping-c 3 {HOST.CONN}
A special syntax for IPMI commands must be used:
IPMI <ipmi control> [value]
Example:
IPMI power off

User group The script is available to members of the user group only.
Host group The script is available for hosts of the host group only.
Host access Read - user must have read permission for the host to execute the

script
Write - user must have write permission for the host to execute
the script.

If macro may resolve to value with spaces (for example, host name), don’t forget to quote as needed.

Standard error is discarded, so make sure to redirect it to standard output manually.

3.6 Audit

The screen can be used to see front-end audit records and list of notifications sent to users.

Audit logs

295

Displayed data:

Parameter Description

Time Time stamp when an action took place.
User User name.
Resource Object, which was affected:

Application
Graph
Host
Item
User

Action Performed action:
Added
Login
Logout
Removed
Updated

Details More detailed information about action.

Audit actions

The screen provides access to history of notifications and remote commands.

296

Displayed data:

Parameter Description

Time Time stamp when an action took place.
Type Type of executed operation:

Notifications
Remote command

Status Status:
Not sent
Sent

Retires left Number of retries left.
Recipient(s) List of recipients.
Message Message used in notification.
Error Error if the notification was not sent.

3.7 Queue

The Queue provides information about performance of Zabbix.

Overview

297

For each item type the following data is displayed:

Parameter Description

Items Item type
5 seconds Data is delayed for 5-10 seconds.
10 seconds Data is delayed for 10-30 seconds.
30 seconds Data is delayed for 30-60 seconds.
1 minute Data is delayed for 1-5 minutes.
5 minutes Data is delayed for 5-10 minutes.
More than 10 minutes Data is delayed for more than 10 minutes.

Overview by proxy

The view gives more detailed information about performance of Zabbix Server and Proxies.

298

For each Proxy and local Zabbix Server the following data is displayed:

Parameter Description

Proxy Proxy name or Server. Server, displayed last, shows statistics
about local server.

Details

The view gives very detailed information about delayed items.

299

List of items is displayed with the following details:

Parameter Description

Next check Expected time stamp of next data retrieval. The time stamps will
always be in the past.

Host Host name.
Description Item name.

3.8 Notifications

This is report on number of notifications sent to each user grouped by media types.

300

For each user number of notifications is displayed per each media type.

3.9 Locales

Locales provides functionality for easy editing of translations of Zabbix front-end.

Locale selection

Select locale you’d like to select for further processing.

301

Parameters:

Parameter Description

Take for default locale The locale will be used as a base one.
Locale to extend Select language you’d like to improve.
New entries Do not add – if something is not translated, ignore it

Leave empty – if something is not translated, leave translation
empty
Fill with default value – if something is not translated, fill
translation with default value

Translation form

This form is used to translate phrases used in Zabbix front-end. Left side is filled with default language, right side consists of
translated phrases.

302

Once translation is ready, press button “Download” to have translation file, which can be used to replace files under in-
clude/locales.

3.10 Installation

The screen makes possible creation of Zabbix front-end configuration file.

303

4 Page parameters

Most Zabbix web interface pages support various HTTP GET parameters that control what will be displayed. They may be passed
by specifying parameter=value pairs after the URL, separated from the URL by a question mark (?) and from each other by
ampersands (&).

4.1 Status of triggers

Accessed as Monitoring → Triggers, page name tr_status.php.

4.1.1 Generic parameters

• groupid
• hostid
• fullscreen

4.1.2 Page specific parameters

• show_triggers - filter option Triggers status, 1 - Problem, 2 - Any
• show_events - filter option Events, 1 - Hide all, 2 - Show all, 3 - Show unacknowledged
• ack_status - filter optionAcknowledge status, 1 - Any, 2 - With unacknowledged events, 3 - With last event unacknowledged
• show_severity - filter option Min severity, -1 - All, 0-5 - corresponding severity
• show_details - filter option Show details, 0 - do not show, 1 - show
• status_change_days - filter option Age less than, in days
• status_change - filter option Age less than, 0 - disabled, 1 - enabled (status_change_days will be used)
• txt_select - filter option Filter by name, freeform string

304

18 Performance Tuning

real_world_configuration performance_tuning_detail

1 Real world configuration

Server with Zabbix 1.0 installed (RedHat Linux 8.0, kernel 2.4.18-14, MySQL/MyISAM 3.23.54a-4, Pentium IV 1.5Ghz, 256Mb, IDE)
is able to collect more than 200 parameters per second from servers being monitored (assuming no network delays).

How many servers can be monitored by Zabbix on the hardware, one may ask? It depends on number of monitored parameters
and how often Zabbix should acquire these parameters. Suppose, each server you monitor has ten parameters to watch for. You
want to update these parameters once in 30 seconds. Doing simple calculation, we see that Zabbix is able to handle 600 servers
(or 6000 checks). In case if these parameters need to be updated once in a minute, the hardware configuration will be able to
handle 600x2=1200 servers. These calculations made in assumption that all monitored values are retrieved as soon as required
(latency is 0). If this is not a requirement, then number of monitored servers can be increased even up to 5x-10x times.

2 Performance tuning

It is very important to have Zabbix system properly tuned for maximum performance.

2.1 Hardware

General advices on hardware:

• Use fastest processor available
• SCSI or SAS is better than IDE (performance of IDE disks may be significantly improved by using utility hdparm) and SATA
• 15K RPM is better than 10K RPM which is better than 7200 RPM
• User fast RAID storage
• Use fast Ethernet adapter
• Having more memory is always better

2.2 Operating System

• Use latest (stable!) version of OS
• Exclude unnecessary functionality from kernel
• Tune kernel parameters

2.3 Zabbix configuration parameters

Many parameters may be tuned to get optimal performance.

2.3.1 zabbix_server

StartPollers

General rule - keep value of this parameter as low as possible. Every additional instance of zabbix_server adds known overhead,
in the same time, parallelism is increased. Optimal number of instances is achieved when queue, on average, contains minimum
number of parameters (ideally, 0 at any given moment). This value can be monitored by using internal check zabbix[queue].

DebugLevel

Optimal value is 3.

DBSocket

MySQL only. It is recommended to use DBSocket for connection to the database. That is the fastest and the most secure way.

2.4 Database Engine

This is probably most important part of Zabbix tuning. Zabbix heavily depends on availability and performance of database engine.

• use fastest database engine, i.e. MySQL
• use stable release of a database engine
• rebuild MySQL or PostgreSQL from sources to get maximum performance
• follow performance tuning instructions taken from MySQL or PostgreSQL documentation
• for MySQL, use InnoDB table structure

305

• ZABBIX works at least 1.5 times faster (comparing to MyISAM) if InnoDB is used. This is because of increased parallelism.
However, InnoDB requires more CPU power.

• tuning the database server for the best performance is highly recommended.
• keep database tables on different hard disks
• ’history’, ’history_str, ’items’ ’functions’, triggers’, and ’trends’ are most heavily used tables.
• for large installations, keeping of MySQL temporary files in tmpfs is recommended

2.5 General advices

• monitor required parameters only
• tune ’Update interval’ for all items. Keeping small update interval may be good for nice graphs, however, this may overload
Zabbix

• tune parameters for default templates
• tune housekeeping parameters
• do not monitor parameters which return same information.

Example: why use system[procload],system[procload5] andsystem[procload15] if system[procload] contains all.

• avoid use of triggers with long period given as function argument. For example, max(3600) will be calculated significantly
slower than max(60).

19 Cookbook

general specific integration

1 General Recipes

1.1 Monitoring of server’s availability

At least three methods (or combination of all methods) may be used in order to monitor availability of a server.

• ICMP ping (Key ”icmpping”)
• Key ”status”
• Trigger function nodata() for monitoring availability of hosts using only active checks

1.2 Sending alerts via WinPopUps

WinPopUps maybe very useful if you’re running Windows OS and want to get quick notification from Zabbix. It could be good
addition for email-based alert messages. Details about enabling of WinPopUps can be found at http://www.zabbix.com/forum/
showthread.php?t=2147.

2 Monitoring of Specific Applications

2.1 AS/400

IBM AS/400 platform can be monitored using SNMP. More information is available at http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg244504.html?Open.

2.2 MySQL

Configuration file misc/conf/zabbix_agentd.conf contains list of parameters that can be used for monitoring of MySQL.

Set of parameter for monitoring MySQL server (v3.23.42 and later)
Change -u and add -p if required
#UserParameter=mysql[ping],mysqladmin -uroot ping|grep alive|wc -l
#UserParameter=mysql[uptime],mysqladmin -uroot status|cut -f2 -d":"|cut -f1 -d"T"
#UserParameter=mysql[threads],mysqladmin -uroot status|cut -f3 -d":"|cut -f1 -d"Q"
#UserParameter=mysql[questions],mysqladmin -uroot status|cut -f4 -d":"|cut -f1 -d"S"
#UserParameter=mysql[slowqueries],mysqladmin -uroot status|cut -f5 -d":"|cut -f1 -d"O"
#UserParameter=mysql[qps],mysqladmin -uroot status|cut -f9 -d":"
#UserParameter=version[mysql],mysql -V

306

http://www.zabbix.com/forum/showthread.php?t=2147
http://www.zabbix.com/forum/showthread.php?t=2147
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244504.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244504.html?Open

2.2.1 mysql[ping]

Check whether MySQL is alive

Result: 0 - not started 1 - alive

2.2.2 mysql[uptime]

Number of seconds MySQL is running

2.2.3 mysql[threads]

Number of MySQL threads

2.2.4 mysql[questions]

Number of processed queries

2.2.5 mysql[slowqueries]

Number of slow queries

2.2.6 mysql[qps]

Queries per second

2.2.7 mysql[version]

Version of MySQL Example: mysql Ver 11.16 Distrib 3.23.49, for pc-linux-gnu (i686)

2.3 Mikrotik routers

Use SNMP agent provided by Mikrotik. See http://www.mikrotik.com for more information.

2.4 WIN32

Use Zabbix W32 agent included (pre-compiled) into Zabbix distribution.

2.5 Novell

Use MRTG Extension Program for NetWare Server (MRTGEXT.NLM) agent for Novell. The agent is compatible with protocol used by
Zabbix. It is available from http://forge.novell.com/modules/xfmod/project/?mrtgext.

Items have to be configured of type Zabbix Agent and must have keys according to the MRTGEXT documentation.

For example:

** UTIL1 **

1 minute average CPU utilization

** CONNMAX **

Max licensed connections used

** VFKSys **

bytes free on volume Sys:

Full list of parameters supported by the agent can be found in readme.txt, which is part of the software.

2.6 Tuxedo

Tuxedo command line utilities tmadmin and qmadmin can be used in definition of a UserParameter in order to return per
server/service/queue performance counters and availability of Tuxedo resources.

2.7 Informix

Standard Informix utility onstat can be used for monitoring of virtually every aspect of Informix database. Also, Zabbix can retrieve
information provided by Informix SNMP agent.

2.8 JMX

First of all, you need to configure your jvm to allow jmx monitoring. How do you know if you can do this? You can use the sun
jconsole utility that comes with the jdk and point it at your machine running the jvm. If you can connect, you are good.

In my tomcat environment, I enable it by setting the following options for the jvm:

307

http://www.mikrotik.com
http://forge.novell.com/modules/xfmod/project/?mrtgext

-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=xxxxx \
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=true \
-Dcom.sun.management.jmxremote.password.file=/path/java/jre/lib/management/jmxremote. password"

This tells the jmx server to run on port XXXXX, to use password authentication, and to refer to the passwords stored in the
jmxremote.password file. See the sun docs on jconsole for details. (You might consider enabling ssl to make the connection more
secure.)

Once that is done, I can then run jconsole and see everything that is currently exposed (and to verify that I can connect properly).
jconsole will also provide you the information you need to query specific jmx attributes from the information tab.

Now, since I use Tomcat, there are two ways that I can grab the jmx attribute values (or effect a jmx operation). The first way is I
can use the servlet provided by Tomcat. (Don’t know what jboss has). The second way is I can send well formatted requests via a
jmx command line tool.

Let’s say I am interested in peak threads used by the system. I browse down through the jmx objects via jconsole, find
it under java.lang, Threading. After selecting Threading, I click on the info tab, and I can see the name of the mbean is
”java.lang:type=Threading”

With tomcat, I can do the following:

curl -s -u<jmxusername>:<jmxpassword> 'http://<tomcat_hostname>/manager/jmxproxy/?qry=java.lang:type=Threading'

where the jmx username and password are the ones defined in the file defined in the jvm options above, the qry string is the one
obtained from jconsole.

The output from this will be all the metrics from this jmx key. Parse the output and grab the number of your choice.

If you don’t have a servlet that will allow you to make a http request to the jmx interface, you can use the command line tool like
this

/<pathTo>/java -jar /<pathTo>/cmdline-jmxclient.jar <jmxusername>:<jmxpassword> <jvmhostname>:<jmxport> java.lang:type=Threading PeakThreadCount

The difference with the command line client is you need to specify the attribute you are interested in specifically. Leaving it out
will give you a list of all the attributes available under Threading.

Again, parse the output for the data of your choice.

Once you can reliably grab the data you are interested in, you can then turn that command into a zabbix userparm. e.g.

UserParameter=jvm.maxthreads, /usr/bin/curl -s -u<jmxusername>:<jmxpassword> 'http://<tomcat_hostname>/manager/jmxproxy/?qry=java.lang:type=Threading' | /bin/awk '/^PeakThreadCount\:/ { gsub(/[^0123456789]/, ""); print $1 }'

or

UserParameter=jvm.maxthreads, /<pathTo>/java -jar /<pathTo>/cmdline-jmxclient.jar <jmxusername>:<jmxhostname> <jvmhostname>:<jmxport> java.lang:type=Threading PeakThreadCount | <some filter to grab just the number you need - left as an exercise to the reader>

That’s it.

I prefer getting my stats from the servlet via http rather than using the java command line client as it is much ”lighter” to start up
and grab the information.

Need a command line jmx client? I use the one from here: http://crawler.archive.org/cmdline-jmxclient/

Information on setting up jmx monitoring for your jvms http://java.sun.com/j2se/1.5.0/docs...ment/agent.html

General Information on JMX http://java.sun.com/j2se/1.5.0/docs...verviewTOC.html

Note:
Apparently the 1.5 jvm also supports SNMP which provides another option.

3 Integration

3.1 HP OpenView

ZABBIX can be configured to send messages to OpenView server. The following steps must be performed:

Step 1

Define new media.

308

http://crawler.archive.org/cmdline-jmxclient/
http://java.sun.com/j2se/1.5.0/docs
http://java.sun.com/j2se/1.5.0/docs

The media will execute a script which will send required information to OpenView.

Step 2

Define new user.

The user has to be linked with the media.

Step 3

Configure actions.

Configure actions to send all (or selected) trigger status changes to the user.

Step 4

Write media script.

The script will have the following logic. If trigger is ON, then execute OpenView command opcmsg -id application=<application>
msg_grp=<msg_grp> object=<object> msg_text=<text>. The command will return unique message ID which has to be stored
somewhere, preferrably in a new table of ZABBIX database. If trigger is OFF then opcmack <message id> has to be executed with
message ID retrieved from the database.

Refer to OpenView official documentation for more details about opcmsg and opcmack. The media script is not given here.

20 Troubleshooting

sound_in_browsers error_and_warning_messages

1 Error and warning messages

Zabbix daemons generate error and warning messages in case of any problems. The messages are written to log files depending
on configuration parameters.

Some of the messages are numbered.

The table contains complete list of numbered messages with additional details.

Error Message Details

Z3001 Connection to database ’%s’ failed: [%d]
%s

Zabbix daemon is unable to establish
connection to the database. Additional
information:
database name
database error code
database error string

Z3002 Cannot create database ’%s’: [%d] %s Zabbix daemon is unable to create
database. Additional information:
database name
database error code
database error string

Z3003 No connection to the database. This should never happen. Report to Zabbix
Team.

Z3004 Cannot close database: [%d] %s Zabbix daemon is unable to close
connection to the database. Additional
information:
database error code
database error string

Z3005 Query failed: [%d] %s [%s] SQL query execution failed. Additional
information:
database error code
database error string
SQL query string

309

Error Message Details

Z3006 Fetch failed: [%d] %s Record fetch failed. Additional information:
database error code
database error string

Note:
The numbered error messages are supported starting from Zabbix 1.8.

2 Sound in browsers

Sounds in web browsers for Zabbix frontend have been tested in the following browser versions and no additional configuration
was required:

• Firefox 3.5.16 on Linux
• Opera 11.01 on Linux
• Google Chrome 9.0 on Windows
• Firefox 3.5.16 on Windows
• IE7 browser on Windows
• Opera v11.01 on Windows
• Chrome v9.0 on Windows
• Safari v5.0 on Windows, but this browser requires Quick Time Player to be installed

For playing sounds in Zabbix in the user’s profile ”GUI Messaging” should be enabled for all trigger severities and in the GUI global
notification pop-up window sounds also should be enabled.

2.1 Safari 5.0

Quick Time Player is required.

2.2 Microsoft Internet Explorer

To play sounds in MSIE7 and MSIE8:

• In Tools → Internet Options → Advanced enable Play sounds in webpages
• In Tools → Manage Add-ons... enableWindows Media Player
• In Windows Media Player in Tools→Options→File Types enable Windows audio file (wav)

In Windows Media Player in Tools→Options tab ”File Types” is available only if user is a member of groups ”Power Users” or ”Ad-
ministrators”, i.e. regular User do not have access to this tab and do not see it.

Additional thing - if IE do not have some *.wav file in the local cache directory (%userprofile%\Local Settings\Temporary Internet
Files) then sound will not play the first time.

2.3 Firefox v 3.5.16

For playing wav files in the Firefox browser can use one of the following applications: Windows Media Player or Quick Time plug-in.
These configuration settings should be performed in the Tools→Options→Applications menu, there are settings for the ”Wave sound
(audio/wav)” -you should set Windows Media Player for playing these files.

2.4 Known not to work

Browsers where the sound did not work:

• Opera 10.11 on Linux.

21 Escalations and repeated notifications

overview simple_messages remote_commands repeated_notifications delayed_notifications escalate_to_boss complex_scenario

310

1 Overview

Zabbix provides effective and extremely flexible functionality for escalations and repeated notifications. Depending on configu-
ration, Zabbix will automatically escalate (increase escalation step) unresolved problems and execute actions assigned to each
escalation step.

Zabbix supports the following scenarios for escalations, notifications and remote commands:

• Immediately inform users about new problems
• Pro-active monitoring, Zabbix executes arbitrary scripts (remote commands)
• Repeated notifications until problem is resolved
• Delayed notifications and remote commands
• Escalate problems to other user groups
• Different escalation path for acknowledged and unacknowledged problems
• Execute actions (both notifications and remote commands) if a problem exists for more than N hours (seconds, minutes,
etc).

• Recovery message to all interested parties
• Zabbix supports unlimited number of escalation steps

2 Simple messages

Warning:
Warning: before enabling recovery messages or escalations, make sure to add ”Trigger value = PROBLEM” condition to
the action, otherwise remedy events can become escalated as well.

In order to alert MySQL Administrators about any issues with MySQL applications the following configuration can be used:

Since we are not interested in sending multiple messages or escalating MySQL problems to other user groups, escalations are not
enabled.

Zabbix will send a single message to MySQL Administrators and a recovery message when problem is resolved. If sending of
recovery messages is not enabled, Zabbix will send only one message with information about new problem, no messages will be
sent on recovery, i.e. when the problem is resolved.

Action conditions is defined so that it will be activated in case of any problem with any of MySQL applications.

311

Note also use of macros in the messages. Zabbix supports wide range of macros. Complete list of macros is available here: macros

Actions are defined as:

A message will be sent to all members of the group MySQL Administrators.

3 Remote commands

Remote commands is a powerful mechanism for smart pro-active monitoring. Zabbix can execute a command on a monitored host
in case of any pre-defined conditions.

Here is the list of some of the most obvious uses of the feature:

• Automatically restart application (WEB server, middleware, CRM) if it does not respond
• Using IPMI ’reboot’ command reboot remote server if it does not answer requests
• Try to automatically free disk space (remove older files, clean /tmp) if we are running out of disk space
• Migrate one VM from one physical box to another depending on CPU load
• Add new nodes to the cloud environment if we have insufficient CPU (disk, memory, whatever) resources

Configuration of action for remote commands is similar to messaging, the only difference is that Zabbix will execute a command
instead of sending a message.

The action condition is defined so that it will be activated in case of any disaster problems with one of Apache applications.

As a reaction to the disaster problem Zabbix will try to restart Apache process:

312

Note use of the macro {HOSTNAME} here.

Note:
User ’zabbix’ must have enough permissions to execute this script. Also Zabbix agent should run on a remote host and
accept incoming connections. Remote commands are disabled by default and can be enabled in Zabbix agent daemon
configuration file on Unix-like or Windows systems.

Attention:
Remote commands do not work with active Zabbix agents.

See remote command tutorial for more information.

4 Repeated notifications

Repeated notifications is probably one of the most common use of Zabbix escalations.

Make sure that escalations are enabled in the action details:

313

The period defines how frequently Zabbix should increase escalation step. By default, it goes to the next step every hour, i.e. 3600
seconds.

As soon as we enabled escalations, actions operations get additional options: Step(s), Period and Conditions.

Suppose we would like to send 5 messages every hour, so we defined that the operation will be active from escalation step 1 till
5. The escalation period will be taken from action definition unless we overwrote it for an individual operation.

As soon as we have a problem, Zabbix is at step 1, so all operations assigned to the step will be executed. After one hour, escalation
period will be increased automatically (if the problem still exists obviously), so all operations of step 2 will be execute. And so on.

A recovery message will be sent only to those people who received at least one message before in scope of the escalation.

Note:
If the trigger that generated an active escalation is disabled, Zabbix sends a message informing about this fact to persons
that have already received notifications.

5 Delayed notifications

Zabbix escalations supports sending of delayed notifications.

Suppose we would like to be notified about long-standing MySQL problems only. Note that the escalation period was changed to
10 hours and we use a custom default message:

314

The operation is assigned only to step 2. It means it will be executed once after one escalation period, i.e. 10 hours:

Therefore user ’Alexei’ will get a message only in case if a problem exists for more than 10 hours. The notification delay is controlled
by the escalation period.

6 Escalate to Boss

Zabbix escalations can be used to escalate problem to other users and user groups. Problem is not being fixed by MySQL admins?
Escalate to their BOSS!

Now we configured periodical sending of messages to MySQL administrators. The administrators will get four messages before the
problem will be escalated to the Database manager. Note that the manager will get a message only in case if the problem is not
acknowledged yet, supposedly no one is working on it.

315

Note use of the {ESC.HISTORY} macros in the message. The macro will contain information about all previously executed steps.
The manager will get information about all email and all action executed before. MySQL administrators, beware!

7 Complex scenario

Look at this set of actions. After multiple messages to MySQL administrators and escalation to the manager, Zabbix will try to
restart the MySQL database. It will happen if problem exists for 2:30 hours and it hasn’t been acknowledged.

If the problems still exists, after another 30 minutes Zabbix will send a message to all users in Japan.

If this does help, after another hour Zabbix will reboot server with the MySQL database (second remote command) using IPMI
commands.

316

Zabbix API

Zabbix API provides programmable interface to Zabbix for mass manipulations, 3rd party software integration and other purposes.

Currently Zabbix API specification is in draft state. All objects marked as ’draft’ are experimental and should be used with a great
care. We do not guarantee compatibility with future releases.

Object specifications without the ’draft’ mark are stable and can be used for production purposes.

See Zabbix wiki for community provided solutions around the API.

Action

Methods Class containing methods for operations with Actions.

Methods Description

get() Get action details
exists() Check if action exists
create() Create actions
update() Update action details
delete() Delete actions

Object details The table contains complete list of Action attributes.

Action

Parameter Type Description Details

actionid integer Action ID
name string Name
eventsource integer Event source Triggers / Discovery / Auto registration
evaltype integer Height
status integer Status Enabled/Disabled
esc_period integer Default escalation period
def_shortdata string Default message subject
def_longdata string Default message
recovery_msg integer Send recovery message On/Off
r_shortdata string Default recovery message subject
r_longdata string Default message subject

Conditions

Parameter Type Description Details

conditionid integer Condition ID
actionid integer Action ID
conditiontype integer Condition type
operator integer Comparision type
value string Condition value

Operations

operationid integer Condition ID
actionid integer Action ID
operationtype integer Condition type
object integer Comparision type
objectid integer Condition value
shortdata string Custom message subject
longdata string Custom message

317

http://www.zabbix.com/wiki/doc/api

esc_period integer Custom escalation period
esc_step_from integer Escalation step start from
esc_step_to integer Escalation step end on
default_msg integer Use default mesages On/Off
evaltype string Default recovery message subject

Operation media types

opmediatypeid integer Operation media type ID
operationid integer Operation ID
mediatypeid integer Media type ID

Operation conditions

opconditionid integer Operation Condition ID
operationid integer Operation ID
conditiontype integer Condition Type
operator integer Operator
vaelue integer Value

Common tasks The table contains list of common action-related tasks and possible implementation using Zabbix API

Task HOWTO

Add an action Use method action.create
Add a bunch of new actions Use method action.create with array of Action objects
Remove action by Action IDs Use method action.delete array of Action IDs
Retrieve action details by Action IDs Use method action.get with parameter actionids
Retrieve action details by Action name Use method action.get with parameter filter, specify

”name”:”<your action>”

create()

This function allows you to create a action as defined by the action data array.

Parameters

Parameter Type Optional Description Details

action data array or
object

Array of Action objects with
additional paramters
operations and conditions

actionid shouldn’t
be specified

action conditions data array or
object

array of action conditions
objects

action operations data array or
object

array of action operations
objects

Returns

Parameter Description

result Operation successful. Result will contain array of created Action
IDs. actionid are assigned to each Action object

error In case of any errors

318

Example Create new action

{
"jsonrpc":"2.0",
"method":"action.create",
"params":[{

"name":"ZABBIX ACTION",
"eventsource":"0",
"evaltype":"0",
"status":"1",
"esc_period":"3600",
"def_shortdata":"{TRIGGER.NAME}: {STATUS}",
"def_longdata":"{TRIGGER.NAME}: {STATUS}",
"recovery_msg":"0",
"r_shortdata":"{TRIGGER.NAME}: {STATUS}",
"r_longdata":"{TRIGGER.NAME}: {STATUS}",
"conditions":[{

"conditiontype":"3",
"operator":"2",
"value":"TEST"

},{
"conditiontype":"1",
"operator":"1",
"value":"100100000010096"

}],
"operations":[{

"operationtype":"0",
"object":"0",
"objectid":"100100000000017",
"shortdata":"{TRIGGER.NAME}: {STATUS}",
"longdata":"{TRIGGER.NAME}: {STATUS}",
"esc_period":"0",
"esc_step_from":"1",
"esc_step_to":"1",
"default_msg":"1",
"evaltype":"0",
"opconditions":[],
"opmediatypes":[]

},{
"operationtype":"0",
"object":"0",
"objectid":"100100000000001",
"shortdata":"{TRIGGER.NAME}: {STATUS}",
"longdata":"{TRIGGER.NAME}: {STATUS}",
"esc_period":"0",
"esc_step_from":"2",
"esc_step_to":"3",
"default_msg":"1",
"evaltype":"0",
"opconditions":[],
"opmediatypes":[{

"mediatypeid":"100100000000001"
}]

},{
"operationtype":"0",
"object":"0",
"objectid":"100100000000003",
"shortdata":"{TRIGGER.NAME}: {STATUS}",
"longdata":"{TRIGGER.NAME}: {STATUS}",
"esc_period":"0",
"esc_step_from":"3",
"esc_step_to":"4",
"default_msg":"1",

319

"evaltype":"0",
"opconditions":[{

"conditiontype":"14",
"operator":"0",
"value":"0"

},{
"conditiontype":"14",
"operator":"0",
"value":"1"

}],
"opmediatypes":[{

"mediatypeid":"100100000000001"
}]

}]
}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

Action created successfully:

{
"jsonrpc":"2.0",
"result":{

"actionids":["100100000012213"]
},
"id":2
}

Action already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CAction::create] Action [ZABBIX Server] already exists"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several actions. Action items will be removed.

Parameters Array of Action IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Action
IDs.

error In case of any errors

Example Delete actions by action ID

{
"jsonrpc":"2.0",
"method":"action.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",

320

"id":2
}

Actions deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"actionids": ["107824", "107825"]
},
"id":2
}

Actions does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CAction::delete] Action does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether action with given action name or action ID exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to
search for given action ID or
action name

actionid string yes Action ID
name string yes Action name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"action.exists",
"params":{

"nodeids": ["1"],
"name": "Zabbix Server Action"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Action exists:

321

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve Action details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array Group IDs
hostids array Host IDs
triggerids array Trigger IDs
actionids array Action IDs
mediatypeids array Media type IDs
userids array User IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by action fields
search array Return actions by any given action

object field pattern
startSearch integer Search actions field pattern only in start

of the field
excludeSearch integer Exclude from result, actions by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_conditions string Select action conditions Values: shorten, refer,
extend

select_operations string Select action operations Values: shorten, refer,
extend

countOutput integer Count actions, return the number of
actions found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by Action field Values: actionid, name
sortorder string Sort order Values: ASC, DESC
limit integer max number of Action objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Action objects.
error In case of any errors

Example Get actions details by Action name ”zabbix”, with action elements and links:

{
"jsonrpc":"2.0",
"method":"action.get",
"params":{

322

"filter": {"name": "ZABBIX Action"},
"select_operations": "extend",
"select_conditions": "extend",
"output": "extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved Action details:

{
"jsonrpc":"2.0",
"result":[{

"actionid":"100100000000013",
"name":"ZABBIX Action",
"eventsource":"0",
"evaltype":"0",
"status":"1",
"esc_period":"3600",
"def_shortdata":"{TRIGGER.NAME}: {STATUS}",
"def_longdata":"{TRIGGER.NAME}: {STATUS}",
"recovery_msg":"0",
"r_shortdata":"{TRIGGER.NAME}: {STATUS}",
"r_longdata":"{TRIGGER.NAME}: {STATUS}",
"conditions":[{

"conditionid":"100100000000097",
"actionid":"100100000000013",
"conditiontype":"3",
"operator":"2",
"value":"Server"

},{
"conditionid":"100100000000098",
"actionid":"100100000000013",
"conditiontype":"1",
"operator":"1",
"value":"100100000010096"

}],
"operations":[{

"operationid":"100100000000082",
"actionid":"100100000000013",
"operationtype":"0",
"object":"0",
"objectid":"100100000000001",
"shortdata":"{TRIGGER.NAME}: {STATUS}",
"longdata":"{TRIGGER.NAME}: {STATUS}",
"esc_period":"0",
"esc_step_from":"1",
"esc_step_to":"3",
"default_msg":"1",
"evaltype":"0",
"opconditions":[],
"opmediatypes":[{

"opmediatypeid":"100100000000004",
"operationid":"100100000000082",
"mediatypeid":"100100000000001"

}]
},{
"operationid":"100100000000083",
"actionid":"100100000000013",
"operationtype":"0",
"object":"0",
"objectid":"100100000000003",
"shortdata":"{TRIGGER.NAME}: {STATUS}",

323

"longdata":"{TRIGGER.NAME}: {STATUS}",
"esc_period":"0",
"esc_step_from":"3",
"esc_step_to":"4",
"default_msg":"1",
"evaltype":"0",
"opconditions":[{

"opconditionid":"100100000000001",
"operationid":"100100000000083",
"conditiontype":"14",
"operator":"0",
"value":"0"

},{
"opconditionid":"100100000000002",
"operationid":"100100000000083",
"conditiontype":"14",
"operator":"0",
"value":"1"

}],
"opmediatypes":[{

"opmediatypeid":"100100000000005",
"operationid":"100100000000083",
"mediatypeid":"100100000000001"

}]
}]

}]
,
"id":2
}

update()

Available since version: 1.8
The method is used to control all action attributes including action conditions and operations.

Parameters

Parameter Type Optional Description Details

actionid string Action ID.
action attribute any Yes New value for an action

attribute.
action conditions data array or

object
array of action conditions
objects

action operations data array or
object

array of action operations
objects

Returns

Parameter Description

result Operation successful. Result will contain array of updated action
IDs.

error In case of any errors

Example Set action name to ”New Name”:

{
"jsonrpc": "2.0",
"method": "action.update",
"params": {

324

"actionid": "100100000010092",
"name": "New Name"

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 2

}

Retrieved updated action IDs:

{
"jsonrpc": "2.0",
"result": {

"actionids": ["100100000010092"]
},
"id": 2

}

Example #2 Disable action:

{
"actionid": "1",
"status": "0",
}

Parameter ”status” serves for setting status of your action.

Alert

Methods Class containing methods for operations with Alerts.

Methods Description

get() Get alert details

Object details The table contains complete list of Alert attributes.

Parameter Type Description Details

alertid integer Alert ID
actionid integer Action ID
eventid integer Event ID
userid integer User ID
clock integer Date Unix timestamp
mediatypeid integer Madia type ID
sendto string Address
subject string Alert subject
message string Alert message
status integer Alert status
retries integer Retries made to send
error string Error details in case if sending failed

Common tasks The table contains list of common alert-related tasks and possible implementation using Zabbix API

Task HOWTO

Remove a bunch of alerts Use method alert.delete with array of Alert objects
Retrieve alert details by Alert IDs Use method alert.get with parameter alertids
Retrieve alerts details by some period Use method alert.get with parameters time_from and time_till

325

get()

Available since version: 1.8
This function allows you to retrieve alert details based on filtering options. All parameters are optional. If parameter is set in query
this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
alertids array Alert IDs
triggerids array Trigger IDs
eventids array Event IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
time_from integer Search alerts from given date Unix timestamp
time_till integer Search alerts till given date Unix timestamp
filter array Optional filter by alert fields
search array Return alerts by any given alert object

field pattern
startSearch integer Search alerts field pattern only in start

of the field
excludeSearch integer Exclude from result, alerts by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

select_mediatypes string Select mediatypes Values: shorten, refer,
extend

select_users string Select users Values: shorten, refer,
extend

countOutput integer Count alerts, return number of alerts
found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by alert field Values: aler-
tid,clock,eventid,status

sortorder string Sort order Values: ASC, DESC
limit int max number of alert objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Alert objects.
error In case of any errors

Example Get alerts details by trigger IDs and limit output to 10 alerts, return only alert IDS:

{
"jsonrpc":"2.0",
"method":"alert.get",
"params":{

326

"output":"shorten",
"triggerids": ["100100000010137", "100100000010138"],
"time_from": 1285077093,
"time_till": 1285107165,
"limit": 10

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved alerts details:

{
"jsonrpc":"2.0",
"result":[

{"alertid":"100100000010048"},
{"alertid":"100100000010137"},
{"alertid":"100100000017431"},
{"alertid":"100100000017533"},
{"alertid":"100100000017635"},
{"alertid":"100100000017737"},
{"alertid":"100100000017839"},
{"alertid":"100100000017941"},
{"alertid":"100100000018043"},
{"alertid":"100100000018145"}

],
"id":2
}

APIInfo

Class contains methods for getting information about Zabbix and Zabbix API.

Methods

Methods Description

version() Get Zabbix API version

Common tasks The table contains list of common apiinfo-related tasks and possible implementation using Zabbix API

Task HOWTO

Get API version Use method apiinfo.version

version()

Available since version: 1.8.1
Get Zabbix API version.

Parameters This method does not accept any parameters.

Returns

Parameter Description

result Operation successful. Result will contain API version string.
error In case of any errors

327

Example Get Zabbix API version:

{
"jsonrpc":"2.0",
"method":"apiinfo.version",
"params":[],
"auth":"a6e895b98fde40f4f7badf112fd983bf",
"id":2
}

Retrieved API version:

{
"jsonrpc":"2.0",
"result":"1.3",
"id":2
}

Application

Methods Class containing methods for operations with Applications.

Methods Description

get() Get application details
exists() Check if application exists
create() Create applications
update() Update application details
delete() Delete applications

Object details The table contains complete list of Application attributes.

Parameter Type Description Details

applicationid int Application ID
hostid int Host ID
name string Application description
templateid int Parent application ID

Common tasks The table contains list of common application-related tasks and possible implementation using Zabbix API

Task HOWTO

Add an application Use method application.create
Add a bunch of new applications Use method application.create with array of Application objects
Rename an application Use method application.update, set ”name”:1”<new name>”
Delete an application Use method application.delete
Retrieve application details by Application IDs Use method application.get with parameter applicationids
Retrieve applications details by Application name Use method application.get with parameter filter, specify

”name”: [”<your application1>”, ”<your application2>”]

create()

This function allows you to create a application as defined by the application data array.

Parameters

328

Parameter Type Optional Description Details

application data array or
object

Array of Application objects or
a single object

applicationid
shouldn’t be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of created
Application IDs. applicationid are assigned to each Application
object

error In case of any errors

Example Create new application for host with Host ID ”100100000010048”

{
"jsonrpc":"2.0",
"method":"application.create",
"params":[{

"name": "SNMP Items",
"hostid": "100100000010048",

}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

Application created successfully:

{
"jsonrpc":"2.0",
"result":{

"applicationids": ["100100000214797"]
},
"id":2
}

Application already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CApplication::create] Cannot create Application"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several applications.

Parameters Array of Application IDs

Returns

329

Parameter Description

result Operation successful. Result will contain array of deleted
Application IDs.

error In case of any errors

Example Delete applications by application ID

{
"jsonrpc":"2.0",
"method":"application.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Applications deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"applicationids": ["107824", "107825"]
},
"id":2
}

Applications does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CApplication::delete] Application does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether application with given application data exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to search for given application
name string No Application name
hostid string yes Host ID
host string yes Host name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example Check if application with name ”OS” exists for host ”Windows-Server”

330

{
"jsonrpc":"2.0",
"method":"application.exists",
"params":{

"host": "Windows-Server",
"name": "OS"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Application exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve application details based on filtering options. All parameters are optional. If parameter is set
in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
templateids array Template IDs
itemids array Item IDs
applicationids array Application IDs
inherited integer Inherited from templates ”0” - not inherited, ”1” -

inherited
templated integer Templated applications ”0” - belongs to hosts,

”1” - belongs to
templates

monitored integer Monitored applications Checks application and
host status

editable integer only with read-write permission.
Ignored for SuperAdmins

filter array Optional filter by application fields
search array Return applications by given application

fields pattern
startSearch integer Search given pattern only in start of the

fields
excludeSearch integer Exclude from result applications by

given pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

expandData string Output additional fields Adds host name to output
objects

output string Output options Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

select_items string Select items Values: shorten, refer,
extend

331

Parameter Type Description Details

countOutput integer Count applications, return the number
of applications found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by application field Values: applica-
tionid,description,key_,delay,history,trends,type,status

sortorder string Sort order Values: ASC, DESC
limit int max number of application objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of Application
objects.

error In case of any errors

Example Get applications details by application name pattern ”file” and limit output to 2 applications, expand data:

{
"jsonrpc":"2.0",
"method":"application.get",
"params":{

"search": {"name": "file"},
"output": "extend",
"expandData": 1,
"limit": 2

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved applications details:

{
"jsonrpc":"2.0",
"result":[

{
"hosts":[{

"hostid":"100100000010097"
}],
"applicationid":"100100000000572",
"name":"Filesystem",
"templateid":"100100000000005",
"host":"192.168.3.1"

},
{

"hosts":[{
"hostid":"100100000010097"

}],
"applicationid":"100100000000575",
"name":"Log files",
"templateid":"100100000000011",
"host":"192.168.3.1"

}
],
"id":2
}

332

massAdd()

Available since version: 1.8

Parameters Multidimensional array with Item applications data

Parameter Type Optional Description Details

applications array Item application to update.
items array Yes Item objects that should be added to item applications.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Item
application IDs.

error In case of any errors

Example Add two items with ID ”100100000010092”, ”100100000010086” to two applications with ID ”100100000000042”,
”100100000000013”

{
"jsonrpc":"2.0",
"method":"application.massAdd",
"params":{

"applications": [
{"applicationid": "100100000000042"},
{"applicationid": "100100000000013"}

],
"items": [

{"itemid": "100100000010092"},
{"itemid": "100100000010086"}

]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Item applications updated successfully:

{
"jsonrpc":"2.0",
"result":{

"applicationids":["100100000000042","100100000000013"]
},
"id":2
}

update()

Available since version: 1.8
The method is used to control all application attributes including application applications linkage.

Parameters

333

Parameter Type Optional Description Details

applicationid string Application ID.
application attribute any Yes New value for a application attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated
Application IDs.

error In case of any errors

Example Rename application:

{
"jsonrpc":"2.0",
"method":"application.update",
"params":{

"applicationid": "100100000010092",
"name": "IPMI Items"

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated application IDs:

{
"jsonrpc":"2.0",
"result": {

"applicationids":["100100000010092"]
},
"id":2

}

DCheck

Methods Class containing methods for operations with Discovered Checks.

Methods Description

get() Get discovery check details

Object details The table contains complete list of Discovery Check attributes.

Parameter Type Description Details

dcheckid integer Discovery Check ID
druleid integer Discovery Rule ID
type integer Check type
key_ string ZABBIX Agent key
ports string Port Separated by comma
snmp_community string SNMP community
snmpv3_securityname string SNMP
snmpv3_securitylevel integer SNMP security level
snmpv3_authpassphrase string SNMP authentication phrase
snmpv3_privpassphrase string SNMP Private phrase

334

Common tasks The table contains list of common discovery check-related tasks and possible implementation using Zabbix API

Task HOWTO

Retrieve discovery check details by Discovery Rule IDs Use method dcheck.get with parameter dcheckids

get()

Available since version: 1.8
This function allows you to retrieve discovery check details based on filtering options. All parameters are optional. If parameter is
set in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
druleids array Discovery rule IDs
dhostids array Discovery host IDs
dcheckids array Discovery check IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by discovery check fields
search array Return discovery checks by any given

discovery check object field pattern
startSearch integer Search discovery checks field pattern

only in start of the field
excludeSearch integer Exclude from result, discovery checks

by given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

selectDRules string Select discovery rules Values: shorten, refer,
extend

selectDHosts string Select discovery hosts Values: shorten, refer,
extend

countOutput integer Count discovery checks, return the
number of discovery checks found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by discovery check field Values: dcheckid
sortorder string Sort order Values: ASC, DESC
limit integer max number of discovery check objects

to return

Returns

Parameter Description

result Operation successful. Result will contain array of Discovery check
objects.

error In case of any errors

Example Get discovery checks details by discovery rule ID:

{
"jsonrpc":"2.0",

335

"method":"dcheck.get",
"params":{

"druleids": ["100100000000003"],
"output": "extend",
"limit": 3

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved discovery check details:

{
"jsonrpc":"2.0",
"result":[{

"drules":[{"druleid":"100100000000003"}],
"dcheckid":"100100000000037",
"druleid":"100100000000003",
"type":"4",
"key_":"",
"snmp_community":"",
"ports":"80",
"snmpv3_securityname":"",
"snmpv3_securitylevel":"0",
"snmpv3_authpassphrase":"",
"snmpv3_privpassphrase":""

}],
"id":2
}

DHost

Methods Class containing methods for operations with Discovered Hosts.

Methods Description

get() Get discovery host details
delete() Delete discovery hosts

Object details The table contains complete list of Discovery Host attributes.

Parameter Type Description Details

dhostid integer Discovery Host ID
druleid integer Discovery Rule ID
status integer Host Status
lastup integer Last UP state date Unix timestamp
lastdown integer Last DOWN state date Unix timestamp

Common tasks The table contains list of common discovery host-related tasks and possible implementation using Zabbix API

Task HOWTO

Retrieve discovery host details by Discovery Rule IDs Use method dhost.get with parameter dhostids

delete()

336

get()

Available since version: 1.8
This function allows you to retrieve discovery host details based on filtering options. All parameters are optional. If parameter is
set in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
druleids array Discovery rule IDs
dhostids array Discovery host IDs
dserviceids array Discovery service IDs
groupids array Host group IDs
hostids array Host IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by discovery host fields
search array Return discovery hosts by any given

discovery host object field pattern
startSearch integer Search discovery hosts field pattern

only in start of the field
excludeSearch integer Exclude from result, discovery hosts by

given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

selectDRules string Select discovery ruless Values: shorten, refer,
extend

selectDChecks string Select discovery checks Values: shorten, refer,
extend

selectDServices string Select discovery services Values: shorten, refer,
extend

selectGroups string Select groups Values: shorten, refer,
extend

selectHosts string Select hosts Values: shorten, refer,
extend

countOutput integer Count discovery hosts, return the
number of discovery hosts found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by discovery host field Values: dhostid
sortorder string Sort order Values: ASC, DESC
limit int max number of discovery host objects

to return

Returns

Parameter Description

result Operation successful. Result will contain array of Discovery host
objects.

error In case of any errors

Example Get discovery hosts details by discovery rule ID:

337

{
"jsonrpc":"2.0",
"method":"dhost.get",
"params":{

"druleids": ["100100000000003"],
"output": "extend",
"limit": 3

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved discovery host details:

{
"jsonrpc":"2.0",
"result":[{

"drules":[{
"druleid":"100100000000003"

}],
"dhostid":"100100000000002",
"druleid":"100100000000003",
"status":"0",
"lastup":"1245250108",
"lastdown":"0"

},{
"drules":[{

"druleid":"100100000000003"
}],
"dhostid":"100100000000003",
"druleid":"100100000000003",
"status":"0",
"lastup":"1245250130",
"lastdown":"0"

},{
"drules":[{

"druleid":"100100000000003"
}],
"dhostid":"100100000000004",
"druleid":"100100000000003",
"status":"0",
"lastup":"1245250131",
"lastdown":"0"

}],
"id":2
}

DRule

Methods Class containing methods for operations with Discovery Rules.

Methods Description

get() Get discovery rule details
exists() Check if discovery rule exists
create() Create discovery rules
update() Update discovery rule details
delete() Delete discovery rules

Object details The table contains complete list of Discovery Rule attributes.

338

Parameter Type Description Details

druleid integer Discovery Rule ID
proxy_hostid integer Proxy Host ID.
name string Discovery Rule name.
iprange string Ip range.
delay integer Delay between checks
nextcheck integer Next check date Zabbix internal field
status integer Status
unique_dcheckid string Unique discovery check ID

Common tasks The table contains list of common discovery rule-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a bunch of new discovery rules Use method discovery rule.create with array of Discovery Rule
objects

Enable a discovery rule Use method drule.update, set ”status”:0
Disable a discovery rule Use method drule.update, set ”status”:1
Retrieve discovery rule details by Discovery Rule IDs Use method drule.get with parameter druleids
Retrieve discovery rule details by Discovery Rule
name

Use method drule.get with parameter filter, specify
”name”:”<your discovery rule>”

create()

delete()

exists()

get()

Available since version: 1.8
This function allows you to retrieve discovery rule details based on filtering options. All parameters are optional. If parameter is
set in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
druleids array Discovery rule IDs
dhostids array Discovery host IDs
dserviceids array Discovery service IDs
dcheckids array Discovery check IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by discovery rule fields
search array Return discovery rules by any given

discovery rule object field pattern
startSearch integer Search discovery rules field pattern

only in start of the field

339

Parameter Type Description Details

excludeSearch integer Exclude from result, discovery rules by
given field pattern

searchWildcardsEnabled integer Search pattern in whole field using
wildcards

1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

selectDHosts string Select discovery hosts Values: shorten, refer,
extend

selectDChecks string Select discovery checks Values: shorten, refer,
extend

selectDServices string Select discovery services Values: shorten, refer,
extend

countOutput integer Count discovery rules, return the
number of discovery rules found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by discovery rule field Values: druleid, name
sortorder string Sort order Values: ASC, DESC
limit int max number of discovery rule objects

to return

Returns

Parameter Description

result Operation successful. Result will contain array of Discovery rule
objects.

error In case of any errors

Example Get discovery rules details by discovery rule name pattern ”local”:

{
"jsonrpc":"2.0",
"method":"drule.get",
"params":{

"search": {"name": "local"},
"output": "extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved discovery rule details:

{
"jsonrpc":"2.0",
"result":[{

"druleid":"100100000000003",
"proxy_hostid":"0",
"name":"Local network",
"iprange":"192.168.0.1-255",
"delay":"3600",
"nextcheck":"1280502905",
"status":"0",
"unique_dcheckid":"0"

}],
"id":2
}

340

update()

DService

Methods Class containing methods for operations with Discovered Services.

Methods Description

get() Get discovery service details

Object details The table contains complete list of Discovery Service attributes.

Parameter Type Description Details

dserviceid integer Discovery Service ID
dhostid integer Discovery Host ID
dcheckid integer Discovery Check ID
type integer Service type
key_ string ZABBIX Agent key
port integer Port
value integer Value
status integer Status
lastup integer Last date of UP state
lastdown integer Last date of DOWN state
ip string Discovered host IP

Common tasks The table contains list of common discovery service-related tasks and possible implementation using Zabbix API

Task HOWTO

Retrieve discovery service details by Discovery Rule
IDs

Use method dservice.get with parameter dserviceids

create()

delete()

exists()

get()

Available since version: 1.8
This function allows you to retrieve discovery service details based on filtering options. All parameters are optional. If parameter
is set in query this option counted as ON, except if parameter is equal to NULL.

341

Parameters

Parameter Type Description Details

nodeids array Node IDs
druleids array Discovery rule IDs
dhostids array Discovery host IDs
dcheckids array Discovery check IDs
dserviceids array Discovery service IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by discovery service

fields
search array Return discovery services by any given

discovery service object field pattern
startSearch integer Search discovery services field pattern

only in start of the field
excludeSearch integer Exclude from result, discovery services

by given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

selectDRules string Select discovery rules Values: shorten, refer,
extend

selectDChecks string Select discovery checks Values: shorten, refer,
extend

selectDHosts string Select discovered hosts Values: shorten, refer,
extend

selectHosts string Select hosts Values: shorten, refer,
extend

countOutput integer Count discovery hosts, return the
number of discovery services found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by discovery service field Values: dserviceid,
dhostid

sortorder string Sort order Values: ASC, DESC
limit int max number of discovery service

objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Discovery service
objects.

error In case of any errors

Example Get discovery services details by discovery rule ID:

{
"jsonrpc":"2.0",
"method":"dservice.get",
"params":{

"druleids": ["100100000000003"],
"output": "extend",
"limit": 2

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

342

Retrieved discovery services details:

{
"jsonrpc":"2.0",
"result":[{

"drules":[{
"druleid":"100100000000003"

}],
"dhosts":[{

"dhostid":"100100000000036"
}],
"dchecks":[{

"dcheckid":"100100000000037"
}],
"dserviceid":"100100000000042",
"dhostid":"100100000000036",
"type":"4",
"key_":"",
"value":"",
"port":"80",
"status":"0",
"lastup":"1252320879",
"lastdown":"0",
"dcheckid":"100100000000037",
"ip":"192.168.3.1",
"druleid":"100100000000003"

},{
"drules":[{

"druleid":"100100000000003"
}],
"dhosts":[{

"dhostid":"100100000000037"
}],
"dchecks":[{

"dcheckid":"100100000000037"
}],
"dserviceid":"100100000000043",
"dhostid":"100100000000037",
"type":"4",
"key_":"",
"value":"",
"port":"80",
"status":"1",
"lastup":"0",
"lastdown":"1271859008",
"dcheckid":"100100000000037",
"ip":"192.168.3.2",
"druleid":"100100000000003"

}],
"id":2
}

update()

Event

Methods Class containing methods for operations with Events.

343

Methods Description

get() Get event details
acknowledge() Acknowledge events
delete() Delete events

Object details The table contains complete list of Event attributes.

Parameter Type Description Details

eventid integer Event ID
source integer Event generation source
object integer Event relation object
objectid integer Related object ID
clock integer Time of generated event
value integer Status
acknowledged integer Flag indicating event ack

Field values

Source

Value Type

0 Triggers
1 Network discovery

Value For triggers

Value Type

0 OK
1 PROBLEM
2 UNKNOWN

For network discovery

Value Type

0 UP
1 DOWN
2 Discovered
3 Lost

Common tasks The table contains list of common event-related tasks and possible implementation using Zabbix API

Task HOWTO

Acknowledge an event Use method event.acknowledge with array of Event objects
Remove events Use method event.delete with array of Event IDs
Retrieve event details by Event IDs Use method event.get with parameter eventids
Retrieve events details by Trigger IDs Use method event.get with parameter triggerids

acknowledge()

Available since version: 1.8
The method is used to control all event attributes including event applications linkage.

344

Parameters

Parameter Type Optional Description Details

eventids string No Array of event IDs.
message any Yes Acknowledge message.

Returns

Parameter Description

result Operation successful. Result will contain array of acknowledged
Event IDs.

error In case of any errors

Example Acknowledge two events and leave a message:

{
"jsonrpc":"2.0",
"method":"event.acknowledge",
"params":{

"eventids": ["100100000010092", "100100000010094"],
"message": "Problem resolved"

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved acknowledged event IDs:

{
"jsonrpc":"2.0",
"result": {

"eventids":["100100000010092", "100100000010094"]
},
"id":2

}

delete()

Available since version: 1.8
This function allows you to delete information about one or several events. All event-related information will be removed including
sent alerts.

Parameters Array of Event IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Event IDs.
error In case of any errors

Example Delete events by event ID

{
"jsonrpc":"2.0",
"method":"event.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

345

Events deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"eventids": ["107824", "107825"]
},
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve event details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array Host group IDs
hostids array Host IDs
triggerids array Trigger IDs
eventids array Event IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
object integer Event object
value integer Event status
source integer Event source
acknowledged integer Acknowledged events
hide_unknown integer Hide unknown events
time_from integer Events since specified date Unix timestamp
time_till integer Events till specified date Unix timestamp
eventid_from integer Events with IDs greater or equal than

specified
eventid_till integer Events with IDs less or equal than

specified
output string Output options Values: shorten, refer,

extend
select_hosts string Select hosts Values: shorten, refer,

extend
select_items string Select items Values: shorten, refer,

extend
select_triggers string Select event triggers Values: shorten, refer,

extend
countOutput integer Count events, return the number of

events found
preservekeys integer Return hash instead of array Keys of hash are object

IDs
sortfield string Sort by event field Values: eventid,clock
sortorder string Sort order Values: ASC, DESC
limit int max number of event objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Event objects.
error In case of any errors

346

Example Get last 10 events for specified period:

{
"jsonrpc": "2.0",
"method": "event.get",
"params": {

"time_from": "1284910040",
"time_till": "1284991200",
"output": "extend",
"sortfield": "clock",
"sortorder": "desc",
"limit": 10

},
"auth": "6f38cddc44cfbb6c1bd186f9a220b5a0",
"id": 2
}

Retrieved events details:

{
"jsonrpc": "2.0",
"result": [{

"eventid": "100100000884382",
"source": "0",
"object": "0",
"objectid": "100100000064507",
"clock": "1284910089",
"value": "1",
"acknowledged": "0"

},{
"eventid": "100100000884383",
"source": "0",
"object": "0",
"objectid": "100100000064661",
"clock": "1284910089",
"value": "1",
"acknowledged": "0"

},{
"eventid": "100100000884385",
"source": "0",
"object": "0",
"objectid": "100100000064661",
"clock": "1284910118",
"value": "0",
"acknowledged": "0"

},{
"eventid": "100100000884384",
"source": "0",
"object": "0",
"objectid": "100100000064507",
"clock": "1284910119",
"value": "0",
"acknowledged": "0"

},{
"eventid": "100100000884386",
"source": "0",
"object": "0",
"objectid": "100100000064661",
"clock": "1284910176",
"value": "1",
"acknowledged": "0"

},{
"eventid": "100100000884387",
"source": "0",

347

"object": "0",
"objectid": "100100000064661",
"clock": "1284910206",
"value": "0",
"acknowledged": "0"

},{
"eventid": "100100000884388",
"source": "0",
"object": "0",
"objectid": "100100000064661",
"clock": "1284910326",
"value": "1",
"acknowledged": "0"

},{
"eventid": "100100000884389",
"source": "0",
"object": "0",
"objectid": "100100000064509",
"clock": "1284910351",
"value": "1",
"acknowledged": "0"

},{
"eventid": "100100000884390",
"source": "0",
"object": "0",
"objectid": "100100000064546",
"clock": "1284910351",
"value": "1",
"acknowledged": "0"

},{
"eventid": "100100000884391",
"source": "0",
"object": "0",
"objectid": "100100000012788",
"clock": "1284910353",
"value": "1",
"acknowledged": "0"

}],
"id": 2
}

Graph

Methods Class containing methods for operations with Graphs.

Methods Description

get() Get graph details
exists() Check if graph exists
create() Create graphs
update() Update graph details
delete() Delete graphs

Object details The table contains complete list of Graph attributes.

Parameter Type Description Details

graphid integer Graph ID
name string Graph name.

348

Parameter Type Description Details

width integer Width.
height integer Height.
yaxismin integer Y axis min value.
yaxismax integer Y axis max value.
templateid integer Parent graph ID.
show_work_period integer Show work period.
show_triggers integer Show items triggers if possible
graphtype integer Chart or Pie.
show_legend integer Show legend for pie graphs.
show_3d integer Show pie graph in 3D view.
percent_left float Show percentile line (left).
percent_right float Show percentile line (right).
ymin_type integer Y axis min limitation type. Calculated, user defined,

by item value.
ymax_type integer Y axis max limitation type. Calculated, user defined,

by item value.
ymin_itemid integer Y axis min limitation by Item ID.
ymax_itemid integer Y axis max limitation by Item ID.

Field values

Y axis min/max type

Value Type

0 Calculated
1 Fixed
2 By item value

Common tasks The table contains list of common graph-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a graph Use method graph.create
Add a bunch of new graphs Use method graph.create with array of Graph objects
Remove graph by Graph IDs Use method graph.delete array of Graph IDs
Retrieve graph details by Graph IDs Use method graph.get with parameter graphids
Retrieve graph details by Graph name Use method graph.get with parameter filter, specify

”name”:”<your graph>”

create()

This function allows you to create a graph as defined by the graph data array.

Parameters

Parameter Type Optional Description Details

graph data array or
object

Array of Graph objects or a
single object with additional
parameter gitems, array of
graph item objects

graphid shouldn’t
be specified

Note:
See also graph item details.

349

Returns

Parameter Description

result Operation successful. Result will contain array of created Graph
IDs. graphid are assigned to each Graph object

error In case of any errors

Example Create new graph

{
"jsonrpc":"2.0",
"method":"graph.create",
"params":[{

"gitems":[{
"itemid":"100100000018469",
"drawtype":"0",
"sortorder":"0",
"color":"999900",
"yaxisside":"0",
"calc_fnc":"2",
"type":"0",
"periods_cnt":"5"
},{
"itemid":"100100000018468",
"drawtype":"0",
"sortorder":"1",
"color":"009900",
"yaxisside":"0",
"calc_fnc":"2",
"type":"0",
"periods_cnt":"5"
},{
"itemid":"100100000018467",
"drawtype":"0",
"sortorder":"2",
"color":"990000",
"yaxisside":"0",
"calc_fnc":"2",
"type":"0",
"periods_cnt":"5"

}],
"name":"CPU Loads",
"width":"900",
"height":"200",
"yaxismin":"0.0000",
"yaxismax":"3.0000",
"templateid":"0",
"show_work_period":"1",
"show_triggers":"1",
"graphtype":"0",
"show_legend":"0",
"show_3d":"0",
"percent_left":"0.0000",
"percent_right":"0.0000",
"ymin_type":"0",
"ymax_type":"0",
"ymin_itemid":"0",
"ymax_itemid":"0"

}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

350

Graph created successfully:

{
"jsonrpc":"2.0",
"result":{

"graphids":["100100000012213"]
},
"id":2
}

Graph already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CGraph::create] Graph already exists [CPU Loads] on Host [ZABBIX-Server]"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several graphs. Graph items will be removed.

Parameters Array of Graph IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Host IDs.
error In case of any errors

Example Delete graphs by graph ID

{
"jsonrpc":"2.0",
"method":"graph.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Graphs deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"graphids": ["107824", "107825"]
},
"id":2
}

Graphs does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CGraph::delete] Graph does not exist"

351

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether graph with given graph data exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to search for given graph
name string No Graph name
hostid string yes Host ID
host string yes Host name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example Check if graph with name ”CPU Loads” exists for host ”ZABBIX-Server”

{
"jsonrpc":"2.0",
"method":"graph.exists",
"params":{

"host": "ZABBIX-Server",
"name": "CPU Loads"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Graph exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This method allows you to retrieve graph details based on filtering options. All parameters are optional. If parameter is set in query
this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
templateids array Template IDs
hostids array Host IDs

352

Parameter Type Description Details

graphids array Graph IDs
itemids array Item IDs
type integer Graph type
inherited integer Inherited from templates ”0” - not inherited, ”1” -

inherited
templated integer Templated items ”0” - belongs to hosts,

”1” - belongs to
templates

editable integer only with read-write permission.
Ignored for SuperAdmins

filter array Optional filter by graph fields
search array Return graphs by any given object field

pattern
startSearch integer Search graphs field pattern only in start

of the field
excludeSearch integer Exclude from result, graphs by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_groups string Select host groups Values: shorten, refer,
extend

select_templates string Select host templates Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

select_items string Select host items Values: shorten, refer,
extend

select_graph_items string Select graph items Values: shorten, refer,
extend

countOutput integer Count graphs, return the number of
graphs found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by graph field Values: graphid, name
sortorder string Sort order Values: ASC, DESC
limit int max number of graph objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Graph objects.
error In case of any errors

Example Get graphs details for graphs containing ”CPU” in their names for host ”ZABBIX-Server” and limit output to two graphs:

{
"jsonrpc":"2.0",
"method":"graph.get",
"params":{

"output":"extend",
"search":{

"name":"CPU"
},
"filter":{

"host":[
"Zabbix-server"

353

]
},
"limit":2

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2

}

Retrieved graph details:

{
"jsonrpc":"2.0",
"result":[

{
"graphid":"100100000000589",
"name":"CPU Loads 2",
"width":"900",
"height":"400",
"yaxismin":"0.0000",
"yaxismax":"100.0000",
"templateid":"0",
"show_work_period":"1",
"show_triggers":"0",
"graphtype":"0",
"show_legend":"0",
"show_3d":"0",
"percent_left":"0.0000",
"percent_right":"0.0000",
"ymin_type":"0",
"ymax_type":"0",
"ymin_itemid":"0",
"ymax_itemid":"0"

},
{

"graphid":"100100000006093",
"name":"CPU Loads",
"width":"900",
"height":"400",
"yaxismin":"0.0000",
"yaxismax":"100.0000",
"templateid":"0",
"show_work_period":"1",
"show_triggers":"0",
"graphtype":"0",
"show_legend":"0",
"show_3d":"0",
"percent_left":"0.0000",
"percent_right":"0.0000",
"ymin_type":"0",
"ymax_type":"1",
"ymin_itemid":"0",
"ymax_itemid":"0"

}
],
"id":2

}

update()

Available since version: 1.8
The method is used to control all graph attributes including graph graphs.

354

Parameters

Parameter Type Optional Description Details

graphid string Graph ID.
graph attribute any Yes New value for a graph attribute.
gitems any Yes New graph item list.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Graph
IDs.

error In case of any errors

Example Set graph y axis max value to ’100’:

{
"jsonrpc":"2.0",
"method":"graph.update",
"params":{

"graphid": "100100000010092",
"ymax_type": 1,
"yaxismax": 100

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated graph IDs:

{
"jsonrpc":"2.0",
"result": {

"graphids":["100100000010092"]
},
"id":2

}

Graphitem

Methods Class containing methods for operations with Graphitems.

Methods Description

get() Get graphitem details

Object details The table contains complete list of Graphitem attributes.

Parameter Type Description Details

gitemid integer Graphitem ID
graphid integer Graph ID
itemid integer Item ID
drawtype integer Draw type Line(0), filled region(1),

bold line(2), dot(3),
dashed(4), gradient(5)

sortorder integer Position in legend
color string Draw color Hex RGB
yaxisside integer Graph Y axis side left (0), right (1)

355

Parameter Type Description Details

calc_fnc integer Graph item data selection function min(1), max(4), avg(2),
all(7)

type integer Graph item type simple (0), aggregated
(1), graph sum (2) - used
in Pie and Exploded
graph types

periods_cnt integer Aggregated periods count

Common tasks The table contains list of common graphitem-related tasks and possible implementation using Zabbix API

Task HOWTO

Get a graphitem Use method graphitem.get

get()

Available since version: 1.8
This function allows you to retrieve graph details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
graphids array Graph IDs
itemids array Item IDs
type integer Graph item type
editable integer only with read-write permission.

Ignored for SuperAdmins
output string Output options Values: shorten, refer,

extend
expandData string Add additional fields to result Values: shorten, refer,

extend
select_graphs string Select graphs Values: shorten, refer,

extend
countOutput integer Count graphs items, return the number

of graph items found
preservekeys integer Return hash instead of array Keys of hash are object

IDs
sortfield string Sort by graph item field Values: gitemid
sortorder string Sort order Values: ASC, DESC
limit int max number of graph item objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of graph objects.
error In case of any errors

Example Get graph items details by graph ID:

{
"jsonrpc":"2.0",
"method":"graphitem.get",
"params":{

356

"graphids": ["100100000012214"],
"output": "extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved graph item details:

{
"jsonrpc":"2.0",
"result":
[{

"graphs":[{
"graphid":"100100000012214"

}],
"gitemid":"100100000025237",
"graphid":"100100000012214",
"itemid":"100100000018506",
"drawtype":"0",
"sortorder":"0",
"color":"009900",
"yaxisside":"1",
"calc_fnc":"2",
"type":"0",
"periods_cnt":"5"

},{
"graphs":[{

"graphid":"100100000012214"
}],
"gitemid":"100100000025240",
"graphid":"100100000012214",
"itemid":"100100000018529",
"drawtype":"0",
"sortorder":"6",
"color":"660066",
"yaxisside":"1",
"calc_fnc":"2",
"type":"0",
"periods_cnt":"5"

}],
"id":2
}

History

Methods Class containing methods for operations with History.

Methods Description

get() Get history details
delete() Delete items history

Object details The table contains complete list of History attributes.

Parameter Type Description Details

id integer History ID Not all history tables got this field
itemid integer Item ID
clock integer Unix timestamp.

357

Parameter Type Description Details

value integer Item value.

Common tasks The table contains list of common history-related tasks and possible implementation using Zabbix API

Task HOWTO

Get some item history Use method history.get
Delete items history Use method history.delete with array of item IDs

delete()

get()

Available since version: 1.8.3
This method allows you to retrieve history details based on filtering options.

All parameters are optional except ”history”. If parameter is set in query, this option is considered as being ON, except if parameter
is equal to NULL.

Getting values for multiple items of different types (history parameter) is not supported at this time.

Parameters

Parameter Type Description Details

history array Item value type
nodeids array Node IDs
hostids array Host IDs
triggerids array Template IDs
itemids array Item IDs
time_from integer Select data from Unix timestamp
time_till integer Select data till Unix timestamp
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by history fields
search array Return history by any given history

object field pattern
startSearch integer Search history field pattern only in start

of the field
excludeSearch integer Exclude from result, history by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

countOutput integer Count history values, return the number
of values found

groupCount integer Return the number of results grouped
by given IDs

groupOutput integer Group result by passed IDs
preservekeys integer Return hash instead of array Keys of hash are object

IDs
sortfield string Sort by history field Values: itemid, clock
sortorder string Sort order Values: ASC, DESC
limit int max number of history objects to return

358

Returns

Parameter Description

result Operation successful. Result will contain array of History objects.
error In case of any errors

Example Get history details for numeric(float) item with ID ”100100000018467” starting from ”1284387605” (13.09.2010
17:23:39) till ”1284387846” (13.09.2010 17:24:06)

{
"jsonrpc":"2.0",
"method":"history.get",
"params":{

"history": 0,
"itemids": ["100100000018467"],
"time_from": "1284387605"
"time_till": "1284387846"
"output":"extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved history details:

{
"jsonrpc":"2.0",
"result":[{

"itemid":"100100000018467",
"clock":"1284387607",
"value":"0.9300"

},{
"itemid":"100100000018467",
"clock":"1284387627",
"value":"0.9200"

},{
"itemid":"100100000018467",
"clock":"1284387807",
"value":"0.9400"

},{
"itemid":"100100000018467",
"clock":"1284387827",
"value":"0.9300"

}],
"id":2
}

Host

Methods Class containing methods for operations with Hosts.

Methods Description

get() Get host details
exists() Check if host exists
create() Create hosts
update() Update host details
delete() Delete hosts
massAdd() Mass add template linkage, macros, host groups

359

Methods Description

massUpdate() Mass update host details, link templates, add host groups
massRemove() Mass remove template linkage, macros, host groups

Object details The table contains complete list of Host attributes.

Parameter Type Description Details

hostid int Host ID
host string Host name.
port int Port number.
status int Host Status.
useip int Use IP.
dns string DNS.
ip string IP.
proxy_hostid int Proxy Host ID.
useipmi int Use IPMI.
ipmi_ip string IPMAI IP.
ipmi_port int IPMI port.
ipmi_authtype int IPMI authentication type.
ipmi_privilege int IPMI privilege.
ipmi_username string IPMI username.
ipmi_password string IPMI password.

Common tasks The table contains list of common host-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a host Use method host.create
Add a bunch of new hosts Use method host.create with array of Host objects
Enable a host Use method host.update, set ”status”:0
Disable a host Use method host.update, set ”status”:1
Retrieve host details by Host IDs Use method host.get with parameter hostids
Retrieve host details by Host name Use method host.get with parameter filter, specify

”host”:”<your host>”

create()

This method allows you to create a host as defined by the host data array.

Parameters

Parameter Type Optional Description Details

host data array or
object

No Array of Host objects or a
single object

hostid shouldn’t
be specified

groups array No HostGroup Objects add Host
to.

templates array No Templates Objects link Host to.

Returns

Parameter Description

result Operation successful. Result will contain array of created Host IDs.
hostid are assigned to each Host object

error In case of any errors

360

{
"jsonrpc":"2.0",
"method":"host.create",
"params":{

"host":"Linux001",
"ip":"192.168.3.1",
"port":10050,
"useip":1,
"groups":[

{
"groupid":50

}
],
"templates":[

{
"templateid":20045

}
]

},
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Example Host added successfully:

{
"jsonrpc":"2.0",
"result":{

"hostids": ["107819"]
},
"id":3
}

Host already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CHost::create] Host [Linux001] already exists"

},
"id":3
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several hosts. All host-related information will be removed including
items, graphs, macros, application, historical data, etc.

Parameters Array of Host IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Host IDs.
error In case of any errors

361

Example Delete hosts by Host ID

{
"jsonrpc":"2.0",
"method":"host.delete",
"params":[

{
"hostid":"107824"

},
{

"hostid":"107825"
}

],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Hosts deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"hostids": ["107824", "107825"]
},
"id":2
}

Host does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CHost::delete] Host does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether host with given host name or host ID exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to
search for given host ID or
host name

hostid string yes Host ID
host string yes Host name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

362

Example

{
"jsonrpc":"2.0",
"method":"host.exists",
"params":{

"nodeids": ["1"],
"host": "ZABBIX-Server"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Host exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve host details based on filtering options. All parameters are optional. If parameter is set in query
this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
templateids array Template IDs
itemids array Item IDs
triggerids array Trigger IDs
graphids array Graph IDs
proxyids array Proxy IDs
maintenanceids array Maintenance IDs
dhostids array Discovered host IDs
dserviceids array Discovered services IDs
monitored_hosts integer return only monitored Hosts
templated_hosts integer include templates in result
proxy_hosts integer return only Proxies
with_items integer only with items
with_monitored_items integer only with monitored items
with_historical_items integer only with historical items
with_triggers integer only with triggers
with_monitored_triggers integer only with monitored triggers
with_httptests integer only with http tests
with_monitored_httptests integer only with monitored http tests
with_graphs integer only with graphs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by host fields
search array Return hosts by any given host object

field pattern
startSearch integer Search hosts field pattern only in start

of the field
excludeSearch integer Exclude from result, hosts by given field

pattern

363

Parameter Type Description Details

searchWildcardsEnabled integer Search pattern in whole field using
wildcards

1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_groups string Select host groups Values: shorten, refer,
extend

selectParentTemplates string Select host templates Values: shorten, refer,
extend

select_items string Select host items Values: shorten, refer,
extend

select_triggers string Select host triggers Values: shorten, refer,
extend

select_graphs string Select host graphs Values: shorten, refer,
extend

select_dhosts string Select host related discovery hosts Values: shorten, refer,
extend

select_dservices string Select host related discovery services Values: shorten, refer,
extend

select_applications string Select host applications Values: shorten, refer,
extend

select_macros string Select host macros Values: shorten, refer,
extend

select_profile string Select host profile Values: shorten, refer,
extend

countOutput integer Count hosts, return the number of hosts
found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by host field Values:
hostid,host,status,dns,ip

sortorder string Sort order Values: ASC, DESC
limit int max number of host objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Host objects.
error In case of any errors

Example Get hosts details by host name ”Zabbix-server”,”Zabbix-server TEST”:

{
"jsonrpc":"2.0",
"method":"host.get",
"params":{

"output":"extend",
"filter":{

"host":["Zabbix-server","Zabbix-server TEST"]
}

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved host details:

{
"jsonrpc":"2.0",
"result":[{

364

"maintenances":[{
"maintenanceid":"0"

}],
"hostid":"100100000010017",
"proxy_hostid":"0",
"host":"ZABBIX-Server",
"dns":"ip4-dm",
"useip":"1",
"ip":"192.168.3.4",
"port":"31055",
"status":"0",
"disable_until":"0",
"error":"",
"available":"1",
"errors_from":"0",
"lastaccess":"0",
"inbytes":"0",
"outbytes":"0",
"useipmi":"0",
"ipmi_port":"623",
"ipmi_authtype":"-1",
"ipmi_privilege":"2",
"ipmi_username":"",
"ipmi_password":"",
"ipmi_disable_until":"0",
"ipmi_available":"0",
"snmp_disable_until":"0",
"snmp_available":"0",
"maintenanceid":"0",
"maintenance_status":"0",
"maintenance_type":"0",
"maintenance_from":"0",
"ipmi_ip":"",
"ipmi_errors_from":"0",
"snmp_errors_from":"0",
"ipmi_error":"",
"snmp_error":""

},{
"maintenances":[{

"maintenanceid":"0"
}],
"hostid":"100100000010229",
"proxy_hostid":"0",
"host":"ZABBIX-Server TEST",
"dns":"ip4-dm",
"useip":"1",
"ip":"192.168.3.4",
"port":"31055",
"status":"0",
"disable_until":"0",
"error":"",
"available":"1",
"errors_from":"0",
"lastaccess":"0",
"inbytes":"0",
"outbytes":"0",
"useipmi":"0",
"ipmi_port":"623",
"ipmi_authtype":"-1",
"ipmi_privilege":"2",
"ipmi_username":"",
"ipmi_password":"",

365

"ipmi_disable_until":"0",
"ipmi_available":"0",
"snmp_disable_until":"0",
"snmp_available":"0",
"maintenanceid":"0",
"maintenance_status":"0",
"maintenance_type":"0",
"maintenance_from":"0",
"ipmi_ip":"",
"ipmi_errors_from":"0",
"snmp_errors_from":"0",
"ipmi_error":"",
"snmp_error":""

}],
"id":2
}

massAdd()

Available since version: 1.8
==== Parameters ==== multidimensional array with Hosts, Groups, Template, Macros data
Only host details can be added this way, not hosts themselves.

Parameter Type Optional Description Details

hosts array Host objects to update
groups array Yes Host group objects where hosts should be added.
templates array Yes Template objects which should be linked to hosts.
macros array Yes Macros objects which should be added to hosts.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host IDs.
error In case of any errors

Example Add two macros to host with ID ”100100000010092”

{
"jsonrpc":"2.0",
"method":"host.massAdd",
"params":{
"hosts":
{
"hostid": "100100000010092"
},
"macros": [
{

"macro": "{$TEST1}",
"value": "MACROTEST1"

},
{

"macro": "{$TEST2}",
"value": "MACROTEST2"

}
]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

366

Hosts updated successfully:

{
"jsonrpc":"2.0",
"result":{

"hostids":["100100000010092"]
},
"id":2
}

massRemove()

Available since version: 1.8
==== Parameters ==== multidimensional array with Hosts data

Parameter Type Optional Description Details

hostids array Hostids to update
groupids array Yes Host groupids where hosts should be removed.
templateids array Yes Templateid which should be unlinked from hosts.
macros array Yes Macros which should be removed from hosts.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host IDs.
error In case of any errors

Example Remove from host with ID ”100100000010092” two macros {$TEST1},{$TEST2}

{
"jsonrpc":"2.0",
"method":"host.massRemove",
"params":{

"hostids": ["100100000010092"],
"macros": ["{$TEST1}","{$TEST2}"]

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Hosts updated successfully:

{
"jsonrpc":"2.0",
"result":{
"hostids":["100100000010092"]

},
"id":2
}

massUpdate()

Available since version: 1.8
==== Parameters ==== multidimensional array with Hosts data

367

Parameter Type Optional Description Details

hosts array Host objects to update
host string Host name.
groupids array Host group IDs to add host to.
port int Yes Port.
status int Yes Host Status.
useip int Yes Use IP.
dns string Yes DNS.
ip string Yes IP.
proxy_hostid int Yes Proxy Host ID.
useipmi int Yes Use IPMI.
ipmi_ip string Yes IPMI IP.
ipmi_port int Yes IPMI port.
ipmi_authtype int Yes IPMI authentication type.
ipmi_privilege int Yes IPMI privilege.
ipmi_username string Yes IPMI username.
ipmi_password string Yes IPMI password.

Returns

Parameter Description

result Operation successful. Result will contain array of updated host IDs.
error In case of any errors

Example Enable two hosts and switch to monitoring by IP addresses:

{
"jsonrpc":"2.0",
"method":"host.massUpdate",
"params":{

"hosts":[
{

"hostid": "69665"
},
{

"hostid": "69666"
}

],
"status":0,
"useip":1

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Hosts updated successfully:

{
"jsonrpc":"2.0",
"result":{

"hostids":["69665","69666"]
},
"id":2
}

update()

Available since version: 1.8
The method is used to control all host attributes including host template linkage, macros and host group membership. The method
is a wrapper for host.massUpdate function.

368

Parameters

Parameter Type Optional Description Details

hostid string Host ID.
host string Yes Host name.
status int Yes Host Status.
dns string Yes Host DNS.
ip string Yes Host IP.
useip int Yes Use IP.
port int Yes Host Port.
proxy_hostid int Yes Proxy id.
useipmi int Yes Use IPMI.
ipmi_ip string Yes IPMI IP.
ipmi_port int Yes IPMI port.
ipmi_authtype int Yes IPMI authentication type.
ipmi_privilege int Yes IPMI privilege.
ipmi_username string Yes IPMI username.
ipmi_password string Yes IPMI password.
groups array Yes Host groups.
templates array Yes Update host templates

linkage. Missing templates will
be linked, existed stay, others
unlinked

templates_clear array Yes Templates to unlink and clear.
macros array Yes Update host macros. Missing

macros will be added, existed
updated, others deleted.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host IDs.
error In case of any errors

Example 1 Enable host, .i.e set its status to ’0’:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10092",
"status": 0

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 2

}

Retrieved updated host IDs:

{
"jsonrpc": "2.0",
"result": {

"hostids": ["10092"]
},
"id": 2

}

Example 2 Unlink and clear templates on host:

{
"jsonrpc": "2.0",
"method": "host.update",

369

"params": {
"hostid": "10126",
"templates_clear": [{

"templateid": "10124"
},{

"templateid": "10125"
}]

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 2

}

Retrieved updated host IDs:

{
"jsonrpc": "2.0",
"result": {

"hostids": ["10126"]
},
"id": 2

}

Example 3 Update macros on host:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10126",
"macros":[{

"macro":"{$PASS}",
"value":"password"

},{
"macro":"{$DISC}",
"value":"sda"

}]
},
"auth": "700ca65537074ec963db7efabda78259",
"id": 2

}

Retrieved updated host IDs:

{
"jsonrpc": "2.0",
"result": {

"hostids": ["10126"]
},
"id": 2

}

Hostgroup

Methods Class containing methods for operations with Hosts.

Methods Description

get() Get host group details
exists() Check if host group exists
create() Create host groups
update() Update host group details
delete() Delete host groups

370

Methods Description

massAdd() Mass add templates, hosts to host groups
massUpdate() Mass update host group details, update list of templates, hosts
massRemove() Mass remove templates, hosts

Object details The table contains complete list of Host attributes.

Parameter Type Description Details

groupid int Host ID
name string Host name.
internal integer HostGroup status, if equal to 1 - host

group can’t be deleted.

Common tasks The table contains list of common host-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a host group Use method hostgroup.create
Add a bunch of new host groups Use method hostgroup.create with array of Host group objects
Retrieve host group details by Group IDs Use method hostgroup.get with parameter groupids
Retrieve host group details by Host group name Use method hostgroup.get with parameter filter, specify

”name”:”<your hostgroup>”

create()

This function allows you to create a hostgroup as defined by the hostgroup data array.

Parameters

Parameter Type Optional Description Details

hostgroup data array or
object

Array of Host group objects or
a single object

groupid shouldn’t
be specified

Returns

Parameter Description

result Operation successful. Result will contain array of created Host
group IDs. groupid are assigned to each Host group object

error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"hostgroup.create",
"params":[

{"name":"Linux Group"}
],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Host group created successfully:

371

{
"jsonrpc":"2.0",
"result":{

"groupids": ["107819"]
},
"id":3
}

Host group already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CHostGroup::create] HostGroup [Linux Group] already exists"

},
"id":3
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several host groups.

Host group can’t be deleted:

1. contained hosts are linked to single(deleted) host group, hosts must be linked to at least one host group;
2. host group is used to link discovered hosts to it (Administration→General→Other);

Parameters

Parameter Type Optional Description Details

groups array Array of Host Group objects

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Host
Group IDs.

error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"hostgroup.delete",
"params":[

{
"groupid":107824

},
{

"groupid":107825
}

],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Host Groups deleted successfully:

372

{
"jsonrpc":"2.0",
"result":{

"groupids": ["107824", "107825"]
},
"id":2
}

Host Group does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CHostgroup::delete] Host group does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether host group with given host group name or host group ID exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to
search for given host group ID
or name

groupid string yes Host group ID
name string yes Host group name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"hostgroup.exists",
"params":{

"nodeids": ["1"],
"name": "Linux Group"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Host group exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

373

get()

Available since version: 1.8
This function allows you to retrieve host group details based on filtering options. All parameters are optional. If parameter is set
in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
templateids array Template IDs
triggerids array Trigger IDs
graphids array Graph IDs
proxyids array Return only host groups with hosts, that

are monitored by the given proxies.
maintenanceids array Maintenance IDs
monitored_hosts integer return only host groups containing

monitored hosts
templated_hosts integer return only host groups containing

templates
real_hosts integer return only host groups containing hosts

(monitored/not monitored) in result
not_proxy_hosts integer return only host groups not containing

Proxies
with_items integer only with items
with_monitored_items integer only with monitored items
with_historical_items integer only with historical items
with_triggers integer only with triggers
with_monitored_triggers integer only with monitored triggers
with_httptests integer only with http tests
with_monitored_httptests integer only with monitored http tests
with_graphs integer only with graphs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by host group fields
search array Return host groups by any given object

field pattern
startSearch integer Search host groups field pattern only in

start of the field
excludeSearch integer Exclude from result, host groups by

given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_templates string Select contained templates Values: shorten, refer,
extend

select_hosts string Select contained hosts Values: shorten, refer,
extend

countOutput integer Count host groups, return the number
of host groups found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by host group field Values: groupid, name
sortorder string Sort order Values: ASC, DESC

374

Parameter Type Description Details

limit int Max number of host group objects to
return

Returns

Parameter Description

result Operation successful. Result will contain array of Host group
objects.

error In case of any errors

Example Get host groups details by host group name ”Zabbix servers”,”Linux servers”:

{
"jsonrpc":"2.0",
"method":"hostgroup.get",
"params":{

"output": "extend",
"filter":{

"name":["Zabbix servers","Linux servers"]
}

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved host group details:

{
"jsonrpc":"2.0",
"result":[

{
"groupid":"100100000000002",
"name":"Linux servers",
"internal":"0"

},
{

"groupid":"100100000000004",
"name":"ZABBIX Servers",
"internal":"0"

}
],
"id":2
}

massAdd()

Available since version: 1.8

Parameters Multidimensional array with Host groups data

Parameter Type Optional Description Details

groups array Host group to update.
hosts array Yes Host objects that should be added to host groups.
templates array Yes Template objects that should be added to host groups.

375

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host
group IDs.

error In case of any errors

Example Add two hosts with ID ”100100000010092”, ”100100000010086” to two host groups with ID ”100100000000042”,
”100100000000013”

{
"jsonrpc":"2.0",
"method":"hostgroup.massAdd",
"params":{

"groups": [
{"groupid": "100100000000042"},
{"groupid": "100100000000013"}

],
"hosts": [

{"hostid": "100100000010092"},
{"hostid": "100100000010086"}

]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Host groups updated successfully:

{
"jsonrpc":"2.0",
"result":{

"groupids":["100100000000042","100100000000013"]
},
"id":2
}

massRemove()

Available since version: 1.8

Parameters multidimensional array with Hosts data

Parameter Type Optional Description Details

groupids array Host groupids to update.
hostids array Yes Hostids to remove from host groups.
templateids array Yes Templateids to remove from host groups.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host
group IDs.

error In case of any errors

376

Example Remove two hosts with ID ”100100000010092”, ”100100000010086” from two host groups with ID ”100100000000042”,
”100100000000013”

{
"jsonrpc":"2.0",
"method":"hostgroup.massRemove",
"params":{

"groupids": ["100100000000042","100100000000013"],
"hostids": ["100100000010092","100100000010086"]

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Host groups updated successfully:

{
"jsonrpc":"2.0",
"result":{

"groupids":["100100000000042","100100000000013"]
},
"id":2
}

massUpdate()

Available since version: 1.8
==== Parameters ==== multidimensional array with Hosts data

Parameter Type Optional Description Details

groups array HostGroup objects to update.
hosts array Yes Host objects that should be

added to host groups, others
will be removed.

templates array Yes Template objects that should
be added to host groups,
others will be removed.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host
group IDs.

error In case of any errors

Example Add host with ID ”100100000010092” to host group with ID ”100100000000042” others hosts in host group will be
removed:

{
"jsonrpc":"2.0",
"method":"hostgroup.massUpdate",
"params":{

"groups": [
{"groupid": "100100000000042"},

],
"hosts": [

{"hostid": "100100000010092"},
]

},

377

"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Host groups updated successfully:

{
"jsonrpc":"2.0",
"result":{

"groupids":["100100000000042"]
},
"id":2
}

update()

Available since version: 1.8
The method is used to control host group attributes.

Parameters

Parameter Type Optional Description Details

groupid string Host name.
name any Yes New value for a hostgroup name.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Host
group IDs.

error In case of any errors

Example Rename host group:

{
"jsonrpc":"2.0",
"method":"hostgroup.update",
"params":[

{"groupid": "100100000000042", "name": "Rename 1"},
{"groupid": "100100000000013", "name": "Rename 2"}

],
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated host IDs:

{
"jsonrpc":"2.0",
"result": {
"groupids":["100100000000042","100100000000013"]
},
"id":2

}

Image

378

Methods Class containing methods for operations with Images.

Methods Description

get() Get image details
exists() Check if image exists
create() Create images
update() Update image details
delete() Delete images

Object details The table contains complete list of Image attributes.

Parameter Type Description Details

imageid int Image ID
imagetype int Type
name string Image description
image string Image binary data Sent as base64 encoded string

Common tasks The table contains list of common image-related tasks and possible implementation using Zabbix API

Task HOWTO

Add an image Use method image.create
Add a bunch of new images Use method image.create with array of Image objects
Retrieve image details by Image IDs Use method image.get with parameter imageids
Retrieve images details by Image name Use method image.get with parameter filter, specify ”name”:

[”<your image>”]

create()

This function allows you to create a image as defined by the image data array.

Parameters

Parameter Type Optional Description Details

image data array or
object

Array of Image objects or a
single object

imageid shouldn’t
be specified
image must be
sent as base64
encoded binary
data

Returns

Parameter Description

result Operation successful. Result will contain array of created Image
IDs. imageid are assigned to each Image object

error In case of any errors

Example Create a new image:

{
"jsonrpc": "2.0",
"method": "image.create",
"params": [{

"imagetype": "1",

379

"name": "ZABBIX Hub",
"image": "iVBORw0KGgoAAAANSUhEUgAAADAAAAAwCAYAAABXAvmHAAAABmJLR0QA\/wD\/AP+gvaeTAAAAB3RJTUUH0QEfCSscTQyR+gAAB0pJREFUeNrtmU9sU8kdxz\/v2ZgskMTgZEElRULUJdqCoKxUtdoQFUF7WKpWlTih5e8CPXBBXJoT6oFegJyoRKUQULcVp4AqVSpp2ogqYtWoqD1AHAF2IshaK0gISZbYznt+M9MDM9bE2InZOGYPHcnKPMd+M9\/f7zu\/3\/f7DP8f73Y4NVijEWgFotZ6X2ddBXwBDOs5AOEaAGju6Oj40alTp361bt26VqUUxS8p5by\/Zm6uhRA8e\/bsr21tbb8HHgMCkLUC4O7Zs+cHsVisdWRk5HUo9QaFEPM2b79nXtlslu3bt9Pc3Pwx8BlQB8zpLKhwDSjq+r6PlBKAXbt2vfVNstksY2NjAPXAKiDQGRDVAvDTIn4r4O967kgpXRN5gOnMDEJK\/LyPn\/fxfK\/sjb\/77e8AmACsBt4DsoAP4FYr0tlstndmZqa3p6fnNhDR9HQBV0rpGpoACIvfSimkUjQ1xoiEI6xdGSt9gl+DXwmsAEImYOEq0STkeR6ZTIauri50muuAvFnIRB\/g4YM02VmPfBDg+x4t8bXE6iUTTzKkvSnGno\/hehG2t20qfEcIYQIesrNdDQAuEOrv76erq4tEImFSvQrIAI5SyjHRBvjgg024TohQKAQK0i\/TKKVYEQkxNyeRShJZEbaKZSEATnELCJfh8kL12tz2bzaIAwcOfJJOp\/\/U0tJyRkc\/AuTsDBgKrayLEA6HmZx5yftrm1GTpuoofD\/Pq5ksDU1RlIXAzqA9wqW4XO7DAKlUih07dvxcc1Hot\/8B\/ML62Oe6Sii76RgA41MTuK6LUoqxZ18wm8vQuLoRx3FYv2Ed0bX1bPhWjJdzExR\/dyEADhBSSpHNZuchN4CUUty+fduuBjm9UalLG7pG53SVEKXuMz41jlKvNyWkIB\/kcRzY+WGch08esynaTHr8S1zXKT4DCwIwBwSAvXv3cujQoXk3OHz4MLOzswANGkQAeHqjBoCvQeRNtyym0JznodDNTEoCEfBgZJgHqQR5EfB4LEkgBNm57FtRyDEApJT09fWRTCa5dOkSZ8+eJR6P25FYrXk+a9V9EyIBtFkgwrqUFqLY\/v2P3rpSVEKhQl8wNXrLli1cuXJlnm7J5\/PoA7qiVB9Jp9N\/MPPBwUFu3brFmTNnGBwcJB6Pz6NnpeP+\/fsVAyik6\/r16wghEEJw8uTJAgDf97Eq1RtVqqWl5VM9zetsuMB74+Pjv25qatoyOTn5hlCz50KIN+ZSSl68eEFRYVALAjhy5Ehh07lcjpGREVpbWw0NiuuxKrr+lwYQaAAf7ty583c3btz4pVKq\/W2iv3HjRhKJxOenT5\/+p3XWTDpKizm7zQMkk0kuXrzItWvXyqayqE8EGkBev\/dv4HsHDx78s9ZIdTp4ziLewEQ6D6SAB1bRKJ8BA8Bko7W1le7u7kJaFxlCL2JKqdTF4b9ay9frIhDR2VkMgNT3mQWmdXcPygKYnp7m8uXL3Lx5k0gkwrZt20ilUgRBwPT0NOFwuBIAeQ1iTm\/Asa4zVgYqEZOmx5j+krNpFC7F\/\/7+fhoaGtiwYQPJZBKAIAjI5XLE43GePn1ayaLCemHNPb1uaBF7q4qCEpQ4A6Up9Pz5c4QQpFIp6urqkFKyZs0aXNet5AyU88SNRl5XwP1yVBpb1BNHo1Hu3Lkzr3va5+H8+fPcu3fvbTbQ3NHR8cMqeuJHVpZLZ0AIwYkTJ+jq6uL48eN0d3dz7Ngxrl69ah\/iNn2ojD8tx2en5p5YKcXWrVsRQhRqv7mWUtLe3v7bffv2sX\/\/ftavX1\/89VBRo6u9JxZCsHv3bpRStLW1zbuWUjIwMPCbgYGBqXPnzr3ShxIglE6nP9MAXNvUL6cnLtsHTM2350IIgiAwmuk\/wJSVzh9bm7YNkVOJJ34\/2sRXmVesDtUz5U0uzRPbfPR9vyDigiAwm5BWt\/Wt7kuxiam5J\/Y8jwsXLjA0NMTmzZsZHR2lt7eXJ0+e0NfXx6NHj4xQm9OpzOoNe1bNlqUiWAtPLGOx2FFgHdAwNDRUB7iJRMIBVCKRkFZHNZvPWeoTW6cUA1huT6yAPt1wYvpvndV4TDOZA2a0JPA1dZwSUVflTMlyeWLDa+M4siX0ilGGOf1\/YxsX1TS18MTmIOb0xjIl1KKygAa2Klzg0X3hudBye2I7C8LU2UV0uiwjKfbos1JzT0ypClKB0LI98R9tUdjZ2cnRo0d5+PBh7TzxUsY3whNX4WHvu\/XESxzv3hMvcbxbT\/w1KfOTokU\/Am7rpieW0xNXi\/MfZzIZNTExoXp6ehTwCbC2KMohfb1KZyGqP7PYK2r5gEiRmKtaBlzf9\/E8j+Hh4VKPHpUl8oIy3F\/I1CsrG6raZdQB3NHRUTo7O7l7964B8Ea0SkjtSgEsuPhSRwj4GbBGC8AVumr8RRuenP07wXLU7GoAWKl\/M2jUc08r1q+ssrcsoxoUKlaxIb3h7CJi7xuTAWP1wlZzUpZalcsJ4H8M\/gzsEC35lQAAAABJRU5ErkJggg=="

}],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2
}

Image created successfully:

{
"jsonrpc": "2.0",
"result": {

"imageids": ["100100000000047"]
},
"id": 2
}

Image already exists:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "[CImage::create] Cannot create Image"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several images. Image can’t be removed if is used in maps as icon or
background. Available only to super admins.

Parameters Array of Image IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Image
IDs.

error In case of any errors

Example Delete images by image ID

{
"jsonrpc":"2.0",
"method":"image.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Images deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"imageids": ["107824", "107825"]
},
"id":2

380

}

Images does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CImage::delete] Image does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether image with given image data exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to search for given image
imageid string yes Image ID
name string yes Name
imagetype string No Type

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example Check if image icon with name Hub exists:

{
"jsonrpc":"2.0",
"method":"image.exists",
"params":{

"name": "Hub",
"imagetype": 1

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Image exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve image details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

381

Parameters

Parameter Type Description Details

nodeids array Node IDs
imageids array Image IDs
sysmapids array Map IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by image fields
search array Return images by any given image

object field pattern
startSearch integer Search images field pattern only in start

of the field
excludeSearch integer Exclude from result, images by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_image string Select image source
countOutput integer Count images, return the number of

images found
preservekeys integer Return hash instead of array Keys of hash are object

IDs
sortfield string Sort by image field Values: imageid, name
sortorder string Sort order Values: ASC, DESC
limit int max number of image objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Image objects.
error In case of any errors

Example Get images details by image description ”Hub” and ”UPS”, return only image details, without image source:

{
"jsonrpc":"2.0",
"method":"image.get",
"params":{

"filter": {"name": ["Hub", "UPS"]},
"output": "extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved images details:

{
"jsonrpc":"2.0",
"result":[

{
"imageid":"100100000000001",
"imagetype":"1",
"name":"Hub"

},
{

"imageid":"100100000000017",
"imagetype":"1",
"name":"UPS"

}

382

],
"id":2
}

update()

Available since version: 1.8
The method is used to control all image attributes including image applications linkage.

Parameters

Parameter Type Optional Description Details

imageid string Image ID.
image attribute any Yes New value for a image attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Image
IDs.

error In case of any errors

Example Rename image and change type to background:

{
"jsonrpc":"2.0",
"method":"image.update",
"params":[{

"imageid":"100100000000047",
"imagetype":"2",
"name":"Hub background"

}],
"auth":"700ca65537074ec963db7efabda78259",
"id":2
}

Retrieved updated image IDs:

{
"jsonrpc":"2.0",
"result": {

"imageids":["100100000010092"]
},
"id":2

}

Item

Methods Class containing methods for operations with Items.

Methods Description

get() Get item details
exists() Check if item exists
create() Create items
update() Update item details

383

Methods Description

delete() Delete items

Object details The table contains complete list of Item attributes.

Parameter Type Description Details

itemid int Item ID
type int Type
snmp_community string SNMP Community name
snmp_oid string SNMP OID
snmp_port int SNMP port
hostid int Host ID
description string Item description
key_ string Item key
delay int Check interval
history int How long to keep item history (days)
trends int How long to keep item trends (days)
lastvalue string Last value
lastclock int Last check
prevvalue string Previous value
status int Item status
value_type int Value type
trapper_hosts string
units string Value units
multiplier int Value multiplier
delta int Store values as delta
prevorgvalue string
snmpv3_securityname string SNMPv3 security name
snmpv3_securitylevel int SNMPv3 security level
snmpv3_authpassphrase string SNMPv3 authentication phrase
snmpv3_privpassphrase string SNMPv3 private phrase
formula string
error string Item check error
lastlogsize int Last log size
logtimefmt string Log time format
templateid int Parent item ID
valuemapid int Value map ID
delay_flex string Flexible delay
params string
ipmi_sensor string IPMI sensor
data_type int
authtype int
username string
password string
publickey string
privatekey string
mtime int Micro time

Field values

Type

Value Type

0 Zabbix agent
1 SNMPv1
2 Trapper
3 Simple check
4 SNMPv2
5 Internal

384

Value Type

6 SNMPv3
7 Active check
8 Aggregate
9 HTTP test (web monitoring scenario step)
10 External
11 Database monitor
12 IPMI
13 SSH
14 telnet
15 Calculated

Status

Value Type

0 active
1 disabled
3 not supported

Value type

Value Type

0 Numeric (float)
1 Character
2 Log
3 Numeric (unsigned)
4 Text

Data type

Value Type

0 Decimal
1 Octal
2 Hexadecimal

Delta

Value Status

0 As is
1 Delta (speed per second)
2 Delta (simple change)

Common tasks The table contains list of common item-related tasks and possible implementation using Zabbix API

Task HOWTO

Add an item Use method item.create
Add a bunch of new items Use method item.create with array of Item objects
Enable an item Use method item.update, set ”status”:0
Disable an item Use method item.update, set ”status”:1
Retrieve item details by Item IDs Use method item.get with parameter itemids
Retrieve items details by Host name Use method item.get with parameter filter, specify ”host”:

[”<your host1>”]

385

create()

This function allows you to create a item as defined by the item data array.

Parameters

Parameter Type Optional Description Details

item data array or
object

Array of item objects or a
single object

itemid shouldn’t
be specified

Returns

Parameter Description

result Operation successful. Result will contain array of created item IDs.
itemid are assigned to each item object

error In case of any errors

Example Create new item for host with host ID ”100100000010048”

{
"jsonrpc":"2.0",
"method":"item.create",
"params":{

"description": "Free disk space on $1",
"key_": "vfs.fs.size[/home/aly/,free]",
"hostid": "100100000010048",
"applications": ["100100000000001", "100100000000002"]

},
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

Item created successfully:

{
"jsonrpc":"2.0",
"result":{

"itemids": ["100100000214797"]
},
"id":2
}

Item already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CItem::create] Cannot create Item"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several items. All item-related information will be removed including
triggers, empty graphs, child items, historical data.

386

Parameters Array of Item IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Item IDs.
error In case of any errors

Example Delete items by item ID

{
"jsonrpc":"2.0",
"method":"item.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Items deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"itemids": ["107824", "107825"]
},
"id":2
}

Items does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CItem::delete] Item does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether item with given item data exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to search for given item
key_ string No Item key
hostid string yes Host ID
host string yes Host name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

387

Example Check if item with key ”vfs.file.cksum[c:\config.sys]” exists for host ”Windows-Server”

{
"jsonrpc":"2.0",
"method":"item.exists",
"params":{

"host": "Windows-Server",
"key_": "vfs.file.cksum[c:\config.sys]"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Item exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve item details based on filtering options. All parameters are optional. If parameter is set in query
this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
templateids array Template IDs
proxyids array Return only items that belong to the

hosts, that are monitored by the given
proxies.

itemids array Item IDs
graphids array Graph IDs
triggerids array Trigger IDs
applicationids array Application IDs
webitems integer Search also in web items
inherited integer Inherited from templates ”0” - not inherited, ”1” -

inherited
templated integer Templated items ”0” - belongs to hosts,

”1” - belongs to
templates

monitored integer Monitored items Checks item and host
status

editable integer only with read-write permission.
Ignored for SuperAdmins

group string Optional filter by host group name
host string Optional filter by host name
application string Optional filter by application name
belongs string Optional filter by host fields
with_triggers integer Items with triggers
filter array Optional filter by item fields
search string Return items by given item fields

pattern
startSearch integer Search given patterns only in start of

the field

388

Parameter Type Description Details

excludeSearch integer Exclude from result items by given
patterns

searchWildcardsEnabled integer Search pattern in whole field using
wildcards

1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

select_triggers string Select item triggers Values: shorten, refer,
extend

select_graphs string Select item graphs Values: shorten, refer,
extend

select_applications string Select item applications Values: shorten, refer,
extend

countOutput integer Count hosts, return the number of items
found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by item field Values: itemid,
description, key_, delay,
history, trends, type,
status

sortorder string Sort order Values: ASC, DESC
limit int max number of item objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Item objects.
error In case of any errors

Example Get items details by item description pattern ”Apache” and limit output to 10 items, return only item IDS:

{
"jsonrpc":"2.0",
"method":"item.get",
"params":{

"output":"shorten",
"search": {"description": "apache"},
"limit": 10

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved items details:

{
"jsonrpc":"2.0",
"result":[

{"itemid":"100100000010048"},
{"itemid":"100100000010137"},
{"itemid":"100100000017431"},
{"itemid":"100100000017533"},
{"itemid":"100100000017635"},
{"itemid":"100100000017737"},
{"itemid":"100100000017839"},
{"itemid":"100100000017941"},
{"itemid":"100100000018043"},

389

{"itemid":"100100000018145"}
],
"id":2
}

update()

Available since version: 1.8
The method is used to control all item attributes including item applications linkage.

Parameters

Parameter Type Optional Description Details

itemid string Item ID.
item attribute any Yes New value for a item attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Item IDs.
error In case of any errors

Example Enable item, .i.e set its status to ’0’:

{
"jsonrpc":"2.0",
"method":"item.update",
"params":{

"itemid": "100100000010092",
"status": 0

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated item IDs:

{
"jsonrpc":"2.0",
"result": {

"itemids":["100100000010092"]
},
"id":2

}

Maintenance

Methods Class containing methods for operations with Maintenances.

Methods Description

get() Get maintenance details
exists() Check if maintenance exists
create() Create maintenances
update() Update maintenance details
delete() Delete maintenances

390

Object details The table contains complete list of Maintenance attributes.

Maintenance

Parameter Type Description Details

maintenanceid integer Maintenance ID
name string Name.
maintenance_type integer Type. 0: With data collection

1: No data collection
description string Description.
active_since integer Activation date. Unix timestamp
active_till integer Deactivation date. Unix timestamp
timeperiods array of

timeperiod
objects

Timeperiods

Timeperiod

Parameter Type Description Details

timeperiod_type integer Type defines what fields are used and
how values of those fields are
processed.
Required fields by timeperiod type:
0 - start_date, period;
2 - start_time, period, every;
3 - start_time, period, every,
dayofweek;
4 - start_time, period, every,
dayofweek, month, day;

0: Onetime
2: Daily
3: Weekly
4: Monthly

every integer Depends on type:
2 - every Nth day (if every=2
timeperiod is triggered every second
day);
3 - every Nth week
4 - is used when field day is 0 and then
means every Nth week of month (1 - 5)

month integer Number, got by converting binary
number, where each bit represents one
month (Dec is first bit, Jan is last bit) to
decimal number.
For example if you need maintenance
on March and April, binary
representation is ’000000001100’ and
decimal is 12.

dayofweek integer Used for type 3 and for type 4 when
day is 0.
Number with week days calculated in
same way as month. (Sun is first bit,
Mon is last bit)

day integer If equal to 0 then field every and
dayofweek are used, otherwise
represents number of day on which
timeperiod is triggered.

start_time integer Period start time in seconds
period integer Period length in seconds
start_date integer Period start date as Unix timestamp

Common tasks The table contains list of common maintenance-related tasks and possible implementation using Zabbix API

391

Task HOWTO

Add a maintenance Use method maintenance.create
Add a bunch of new maintenances Use method maintenance.create with array of Maintenance

objects
Rename a maintenance Use method maintenance.update, set ”name”:”<new

name>”
Retrieve maintenance details by Maintenance IDs Use method maintenance.get with parameter maintenanceids
Retrieve maintenance details by Maintenance name Use method maintenance.get with parameter filter, specify

”name”:”<your maintenance>”

create()

This method allows you to create a maintenance as defined by the maintenance data array.

Parameters

Parameter Type Optional Description Details

maintenance data array or
object

No Array of Maintenance objects
or a single object

maintenanceid
shouldn’t be
specified

groupids array No Host group ids
hostids array No Host ids

Returns

Parameter Description

result Operation successful. Result will contain array of created
Maintenance IDs. maintenanceid are assigned to each
Maintenance object

error In case of any errors

Examples simple create

{
"jsonrpc":"2.0",
"method":"maintenance.create",
"params":[{

"groupids":[],
"hostids":["100100000010229"],
"name":"ZABBIX Servers",
"maintenance_type":"0",
"description":"",
"active_since":"1276163035",
"active_till":"1307698980"

}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Maintenance added successfully:

{
"jsonrpc":"2.0",
"result":{

"maintenanceids": ["100100000000005"]
},
"id":3
}

392

Maintenance already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CMaintenance::create] Maintenance [ZABBIX Servers] already exists"

},
"id":3
}

create maintenance with onetime period

{
"groupids": [

14
],
"name": "T1",
"maintenance_type": 0,
"description": "",
"active_since": "1276163035",
"active_till": "1307698980",
"timeperiods": [

{
"timeperiod_type": 0,
"start_date": "1307689239",
"period": 7200

}
]

}

create maintenance with daily period (at 11:00 every five days for 6 hours 2 minutes)

{
"groupids": [

14
],
"name": "T2",
"maintenance_type": 0,
"description": "",
"active_since": "1276163035",
"active_till": "1307698980",
"timeperiods": [

{
"timeperiod_type": 2,
"start_time": 39600,
"period": 21720,
"every": 5

}
]

}

create maintenance with weekly period (at 11:00 on Monday and Tuesday of every second week for 6 hours 2 minutes)

{
"groupids": [

14
],
"name": "T3",
"maintenance_type": 0,
"description": "",
"active_since": "1276163035",
"active_till": "1307698980",
"timeperiods": [

{

393

"timeperiod_type": 3,
"start_time": 39600,
"period": 21720,
"every": 2,
"dayofweek": 3

}
]

}

create maintenance with monthly period (at 10:00 on every second week Monday and Wednesday of every January and March for
2 hours)

{
"groupids": [

14
],
"name": "T4",
"maintenance_type": 0,
"description": "",
"active_since": "1276163035",
"active_till": "1307698980",
"timeperiods": [

{
"timeperiod_type": 4,
"start_time": 36000,
"period": 7200,
"every": 2,
"dayofweek": 5,
"month": 5,
"day": 0

}
]

}

delete()

Available since version: 1.8
This function allows you to delete information about one or several maintenances. All maintenance-related information will be
removed including items, graphs, macros, application, historical data, etc.

Parameters Array of Maintenance IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted
Maintenance IDs.

error In case of any errors

Example Delete maintenances by Maintenance ID

{
"jsonrpc":"2.0",
"method":"maintenance.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Maintenances deleted successfully:

394

{
"jsonrpc":"2.0",
"result":{

"maintenanceids": ["107824", "107825"]
},
"id":2
}

Maintenance does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CMaintenance::delete] Maintenance does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether maintenance with given maintenance name or maintenance ID exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to
search for given maintenance
ID or maintenance name

maintenanceid string yes Maintenance ID
maintenance string yes Maintenance name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"maintenance.exists",
"params":{

"nodeids": ["1"],
"maintenance": "ZABBIX Servers"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Maintenance exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

395

get()

Available since version: 1.8
This method allows you to retrieve maintenance details based on filtering options. All parameters are optional. If parameter is set
in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
maintenanceids array Maintenance IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by maintenance fields
search array Return maintenances by any given

maintenance object field pattern
startSearch integer Search maintenances field pattern only

in start of the field
excludeSearch integer Exclude from result, maintenances by

given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_groups string Select host groups Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

countOutput integer Count maintenances, return the
number of maintenances found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by maintenance field Values: maintenanceid,
name

sortorder string Sort order Values: ASC, DESC
limit int max number of maintenance objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of Maintenance
objects.

error In case of any errors

Example Get maintenances details by maintenance name pattern ”server” and limit output to two maintenances:

{
"jsonrpc":"2.0",
"method":"maintenance.get",
"params":{

"search": {
"name":"server"

}
"output": "extend",

396

"select_hosts": "refer",
"select_groups": "refer",
"limit": 2

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved maintenance details:

{
"jsonrpc":"2.0",
"result":[{

"groups":[],
"hosts":[{

"hostid":"100100000010229",
"maintenanceid":"100100000000005"

}],
"maintenanceid":"100100000000005",
"name":"Zabbix server maintenance",
"maintenance_type":"0",
"description":"",
"active_since":"1276163035",
"active_till":"1307698980"

}],
"id":2
}

,

update()

This method allows you to update a maintenance as defined by the maintenance data array.

Parameters

Parameter Type Optional Description Details

maintenance data array or
object

No Array of Maintenance objects
or a single object

maintenanceid
must be specified

groupids array No Host group ids add/remove
to/from maintenance

hostids array No Host ids add/remove to/from
maintenance

Returns

Parameter Description

result Operation successful. Result will contain array of updated
Maintenance IDs.

error In case of any errors

Example Update maintenance name, remove all hosts and update groups:

{
"jsonrpc":"2.0",
"method":"maintenance.update",
"params":[{

"maintenanceid":"100100000000005",
"name":"TEST",

397

"groupids":["100100000010229"],
"hostids":[]

}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Maintenance updated successfully:

{
"jsonrpc":"2.0",
"result":{

"maintenanceids": ["100100000000005"]
},
"id":3
}

Maintenance already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CMaintenance::update] Maintenance [ZABBIX Servers] already exists"

},
"id":3
}

Map

Methods Class containing methods for operations with Maps.

Methods Description

get() Get map details
exists() Check if map exists
create() Create maps
update() Update map details
delete() Delete maps

Object details The table contains complete list of Map attributes.

Map

Parameter Type Description Details

sysmapid integer Map ID
name string Name
width integer Width
height integer Height
backgroundid integer Background image ID
label_type integer Icon label type Label, Element Name, IP,

Status only
label_location integer Icon label location Top, Bottom, Right, Left
highlight integer Icon highlight
expandproblem integer Expanding single problem
markelements integer Extended icon highlighting in case of

status changes
show_unack integer Unacknowledged problem viewing All problems, Separate,

Only unacknowledged

398

Map item

Parameter Type Description Details

selementid integer Map element ID
sysmapid integer Map ID
elementid integer Resource ID
elementtype integer Resource type 0 - host, 1 - map, 2 -

trigger, 3 - host group, 4 -
image

iconid_off integer OK status icon ID
iconid_on integer PROBLEM status icon ID
iconid_unknown integer UNKNOWN status icon ID
iconid_disabled integer Disabled status icon ID
iconid_maintenance integer Maintenance status icon ID
label integer Description
label_location integer Description location
x integer X axis position
y integer Y axis position
url integer Page to open on element click

Map Item Links

Parameter Type Description Details

linkid integer Map link ID
sysmapid integer Map ID
selementid1 integer First linked map element ID
selementid2 integer Second linked map element ID
drawtype integer Link draw type Line, Bold line, Dot, Dashed line
color string Link default color Hex presentation
label string Link description

Map Item Link Status Indicator

Parameter Type Description Details

linktriggerid integer Map link Indicator ID
linkid integer Map link ID
triggerid integer Trigger ID
drawtype integer Draw type Line, Bold line, Dot, Dashed line
color string Color Hex presentation

Common tasks The table contains list of common map-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a map Use method map.create
Add a bunch of new maps Use method map.create with array of Map objects
Remove map by Map IDs Use method map.delete array of Map IDs
Retrieve map details by Map IDs Use method map.get with parameter sysmapids
Retrieve map details by Map name Use method map.get with parameter filter, specify

”name”:”<your map>”

create()

This function allows you to create a map as defined by the map data array.

399

Parameters

Parameter Type Optional Description Details

map data array or
object

Array of Map objects or a
single object with additional
paramter selements, array of
map item objects

sysmapid
shouldn’t be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of created Map IDs.
sysmapid is assigned to each Map object

error In case of any errors

Example Create new map

{
"jsonrpc": "2.0",
"method": "map.create",
"params": [{

"selements": [{
"elementid": "0",
"elementtype": "4",
"iconid_off": "100100000000036",
"iconid_on": "0",
"iconid_unknown": "0",
"label": "New element",
"label_location": "0",
"x": "200",
"y": "100",
"url": "",
"iconid_disabled": "0",
"iconid_maintenance": "0"

}],
"name": "ZABBIX-Map",
"width": "800",
"height": "600",
"backgroundid": "0",
"label_type": "0",
"label_location": "0",
"highlight": 0,
"expandproblem": 0,
"markelements": 0,
"show_unack": 0

}],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2
}

Map created successfully:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": ["100100000012213"]
},
"id": 2
}

Map already exists:

400

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "[CMap::create] Map [ZABBIX-Map] already exists"

},
"id": 2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several maps. Map items and links will be removed.

Parameters Array of Map IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Map IDs.
error In case of any errors

Example Delete maps by map ID

{
"jsonrpc":"2.0",
"method":"map.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Maps deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"sysmapids": ["107824", "107825"]
},
"id":2
}

Maps does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CMap::delete] Map does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether map with given map data exists.

401

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to search for given map
sysmapid string Yes Map ID
name string Yes Name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example Check if map with name ”ZABBIX” exists

{
"jsonrpc":"2.0",
"method":"map.exists",
"params":{

"name": "ZABBIX"
},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Map exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve Map details based on filtering options. All parameters are optional. If parameter is set in query
this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
sysmapids array Map IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by map fields
search array Return maps by any given object field

pattern
startSearch integer Search maps field pattern only in start

of the field
excludeSearch integer Exclude from result, maps by given field

pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_selements string Select map items Values: shorten, refer,
extend

402

Parameter Type Description Details

select_links string Select map item links Values: shorten, refer,
extend

countOutput integer Count maps, return the number of maps
found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by Map field Values: name
sortorder string Sort order Values: ASC, DESC
limit integer max number of map objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Map objects.
error In case of any errors

Example Get maps details by Map name ”zabbix”, with map elements and links:

{
"jsonrpc":"2.0",
"method":"Map.get",
"params":{

"filter": {"name": ["zabbix"]},
"select_selements": "extend",
"select_links": "extend",
"output": "extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved Map details:

{
"jsonrpc":"2.0",
"result":[{

"sysmapid":"100100000000031",
"name":"Link Map",
"width":"800",
"height":"600",
"backgroundid":"0",
"label_type":"2",
"label_location":"0",
"highlight":1,
"expandproblem":1,
"markelements":0,
"show_unack":0,
"selements":[{

"selementid":"100100000000414",
"sysmapid":"100100000000031",
"elementid":"100100000037426",
"elementtype":"2",
"iconid_off":"100100000000001",
"iconid_on":"0",
"iconid_unknown":"0",
"label":"New Element",
"label_location":"0",
"x":"242",
"y":"267",
"url":"",
"iconid_disabled":"0",

403

"iconid_maintenance":"0"
},{

"selementid":"100100000000415",
"sysmapid":"100100000000031",
"elementid":"0",
"elementtype":"4",
"iconid_off":"100100000000001",
"iconid_on":"0",
"iconid_unknown":"0",
"label":"New Element",
"label_location":"0",
"x":"455",
"y":"279",
"url":"",
"iconid_disabled":"0",
"iconid_maintenance":"0"

},{
"selementid":"100100000000416",
"sysmapid":"100100000000031",
"elementid":"0",
"elementtype":"4",
"iconid_off":"100100000000001",
"iconid_on":"0",
"iconid_unknown":"0",
"label":"New Element",
"label_location":"0",
"x":"454",
"y":"111",
"url":"",
"iconid_disabled":"0",
"iconid_maintenance":"0"

},{
"selementid":"100100000000417",
"sysmapid":"100100000000031",
"elementid":"100100000037426",
"elementtype":"2",
"iconid_off":"100100000000001",
"iconid_on":"0",
"iconid_unknown":"0",
"label":"New Element",
"label_location":"-1",
"x":"222",
"y":"68",
"url":"",
"iconid_disabled":"0",
"iconid_maintenance":"0"

},{
"selementid":"100100000000418",
"sysmapid":"100100000000031",
"elementid":"0",
"elementtype":"4",
"iconid_off":"100100000000001",
"iconid_on":"0",
"iconid_unknown":"0",
"label":"New Element",
"label_location":"0",
"x":"103",
"y":"150",
"url":"",
"iconid_disabled":"0",
"iconid_maintenance":"0"

},{
"selementid":"100100000000422",

404

"sysmapid":"100100000000031",
"elementid":"100100000000006",
"elementtype":"1",
"iconid_off":"100100000000005",
"iconid_on":"100100000000013",
"iconid_unknown":"0",
"label":"{HOSTNAME}",
"label_location":"2",
"x":"570",
"y":"197",
"url":"",
"iconid_disabled":"0",
"iconid_maintenance":"0"

}],
"links":[{

"linkid":"100100000000232",
"sysmapid":"100100000000031",
"selementid1":"100100000000414",
"selementid2":"100100000000415",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[{

"linktriggerid":"100100000000326",
"linkid":"100100000000232",
"triggerid":"100100000037426",
"drawtype":"0",
"color":"0"

}]
},{

"linkid":"100100000000233",
"sysmapid":"100100000000031",
"selementid1":"100100000000414",
"selementid2":"100100000000415",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[]

},{
"linkid":"100100000000234",
"sysmapid":"100100000000031",
"selementid1":"100100000000416",
"selementid2":"100100000000417",
"drawtype":"0",
"color":"0000CC",
"label":"\u0414\u042b\u0424\u041e\u0414 \u041b\u042b\u041e\u0424\u0414\u041b \u042b\u041e\u0424",
"linktriggers":[]

},{
"linkid":"100100000000235",
"sysmapid":"100100000000031",
"selementid1":"100100000000416",
"selementid2":"100100000000417",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[{

"linktriggerid":"100100000000327",
"linkid":"100100000000235",
"triggerid":"100100000037426",
"drawtype":"0",
"color":"0"

}]
},{

405

"linkid":"100100000000236",
"sysmapid":"100100000000031",
"selementid1":"100100000000414",
"selementid2":"100100000000415",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[]

},{
"linkid":"100100000000237",
"sysmapid":"100100000000031",
"selementid1":"100100000000414",
"selementid2":"100100000000415",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[]

},{
"linkid":"100100000000238",
"sysmapid":"100100000000031",
"selementid1":"100100000000414",
"selementid2":"100100000000415",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[]

},{
"linkid":"100100000000239",
"sysmapid":"100100000000031",
"selementid1":"100100000000414",
"selementid2":"100100000000415",
"drawtype":"0",
"color":"0000CC",
"label":"",
"linktriggers":[]

},{
"linkid":"100100000000311",
"sysmapid":"100100000000031",
"selementid1":"100100000000422",
"selementid2":"100100000000415",
"drawtype":"3",
"color":"00AA00",
"label":"",
"linktriggers":[{

"linktriggerid":"100100000000323",
"linkid":"100100000000311",
"triggerid":"100100000012794",
"drawtype":"4",
"color":"DD0000"

},{
"linktriggerid":"100100000000324",
"linkid":"100100000000311",
"triggerid":"100100000012795",
"drawtype":"4",
"color":"DD0000"

},{
"linktriggerid":"100100000000325",
"linkid":"100100000000311",
"triggerid":"100100000012796",
"drawtype":"4",
"color":"DD0000"

}]
}]

406

}] ,
"id":2
}

update()

Available since version: 1.8
The method is used to control all map attributes.

Parameters

Parameter Type Optional Description Details

sysmapid string Map ID.
map attribute any Yes New value for a map attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Map IDs.
error In case of any errors

Example Set map name to ”New Name”:

{
"jsonrpc":"2.0",
"method":"map.update",
"params":{

"sysmapid": "100100000010092",
"name": "New Name"

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated map IDs:

{
"jsonrpc":"2.0",
"result": {

"sysmapids":["100100000010092"]
},
"id":2

}

Mediatype

Methods Class containing methods for operations with Media types.

Methods Description

get() Get media type details
create() Create media types
update() Update media type details
delete() Delete media types

Object details

407

Media_type The table contains complete list of Media types attributes.

Parameter Type Description Details

mediatypeid integer Media type ID
description string Name
type integer Media type 0 - Email, 1 - External

script, 2 - SMS, 3 - Jabber,
100 - EzTexting

smtp_server string SMTP server name
smtp_helo string HELO value for SMTP server
smtp_email string Email address of Zabbix server
exec_path string Name of external script
gsm_modem string Serial device name of GSM modem
username string User name Jabber user name used

by Zabbix server
passwd string User password Jabber password used by

Zabbix server

Common tasks The table contains list of common user-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a media type Use method mediatype.create
Add a bunch of new media types Use method mediatype.create with array of User group objects
Update media type Use method mediatype.update with media type IDs
Retrieve media type details by Group IDs Use method mediatype.get with parameter mediatypeids
Retrieve media type details by User group name Use method mediatype.get with parameter filter, specify

”description”:”<your mediatype>”

create()

This function allows you to create a mediatype as defined by the mediatype data array.

Parameters

Parameter Type Optional Description Details

mediatype data array or
object

Array of Mediatype objects or
a single object

mediatypeid
shouldn’t be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of created
Mediatype IDs. mediatypeid are assigned to each Mediatype
object

error In case of any errors

Example Create two new mediatypes:

{
"jsonrpc": "2.0",
"method": "mediatype.create",
"params": [{

"type": "0",
"description": "Root Email",
"smtp_server": "rootmail@domain.com",

408

"smtp_helo": "domain.com",
"smtp_email": "domain@domain.com",
"exec_path": "",
"gsm_modem": "",
"username": "",
"passwd": ""

},
{

"type": "2",
"description": "SMS",
"smtp_server": "",
"smtp_helo": "",
"smtp_email": "",
"exec_path": "",
"gsm_modem": "\/dev\/ttyS0",
"username": "",
"passwd": ""

}],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2
}

Mediatype created successfully:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": ["100100000214797", "100100000214798"]
},
"id": 2
}

Mediatype already exists:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "[CMediatype::create] Cannot create Mediatype"

},
"id": 2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several mediatypes. All mediatype-related information will be removed
including triggers, empty graphs, child mediatypes, historical data.

Parameters Array of Mediatype IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted
Mediatype IDs.

error In case of any errors

Example Delete mediatypes by mediatype ID

409

{
"jsonrpc": "2.0",
"method": "mediatype.delete",
"params": ["107824", "107825"],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 2
}

Mediatypes deleted successfully:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": ["107824", "107825"]
},
"id": 2
}

Mediatypes do not exist:

{
"jsonrpc": "2.0",
"error": {

"code": -32500,
"message": "Application error.",
"data": "[CMediatype::delete] Mediatype does not exist"

},
"id": 2
}

get()

Available since version: 1.8
This function allows you to retrieve mediatype details based on filtering options. All parameters are optional. If parameter is set
in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
userids array User IDs
mediaids array User media IDs
mediatypeids array Mediatype IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by mediatype fields
search string Return mediatypes by given mediatype

fields pattern
startSearch integer Search given patterns only in start of

the field
excludeSearch integer Exclude from result mediatypes by

given patterns
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_users string Select users Values: shorten, refer,
extend

select_medias string Select user media Values: shorten, refer,
extend

410

Parameter Type Description Details

countOutput integer Count mediatypes, returned the
number of mediatypes found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by mediatype field Values: mediatypeid
sortorder string Sort order Values: ASC, DESC
limit int max number mediatype of objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of Mediatype
objects.

error In case of any errors

Example Get mediatypes details by mediatype description pattern ”sms” and limit output to 1 mediatype, return fullmediatype
object:

{
"jsonrpc": "2.0",
"method": "mediatype.get",
"params": {

"search": {"description": "sms"},
"output": "extend",

},
"auth": "6f38cddc44cfbb6c1bd186f9a220b5a0",
"id": 2
}

Retrieved mediatypes details:

{
"jsonrpc": "2.0",
"result": [{

"mediatypeid": "100100000000003",
"type": "2",
"description": "SMS",
"smtp_server": "",
"smtp_helo": "",
"smtp_email": "",
"exec_path": "",
"gsm_modem": "\/dev\/ttyS0",
"username": "",
"passwd": ""

}],
"id": 2
}

update()

Available since version: 1.8
The method is used to control all mediatype attributes including mediatype applications linkage.

Parameters

411

Parameter Type Optional Description Details

mediatypeid string Mediatype ID.
mediatype attribute any Yes New value for a mediatype attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated
Mediatype IDs.

error In case of any errors

Example Change SMTP server for mediatype:

{
"jsonrpc": "2.0",
"method": "mediatype.update",
"params": [{

"mediatypeid": "100100000010092",
"smtp_server": "usdomain@usdomain.org"

}],
"auth": "700ca65537074ec963db7efabda78259",
"id": 2

}

Retrieved updated mediatype IDs:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": ["100100000010092"]
},
"id": 2

}

Proxy

Methods Class containing methods for operations with Proxys.

Methods Description

get() Get proxy details

Object details The table contains complete list of Proxy attributes.

Parameter Type Description Details

proxyid integer Proxy ID
host string Proxy name.
status integer Proxy Status.

Common tasks The table contains list of common proxy-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a proxy Use method proxy.create
Add a bunch of new proxys Use method proxy.create with array of Proxy objects
Enable a proxy Use method proxy.update, set ”status”:5
Disable a proxy Use method proxy.update, set ”status”:6

412

Task HOWTO

Retrieve proxy details by Proxy IDs Use method proxy.get with parameter proxyids
Retrieve proxy details by Proxy name Use method proxy.get with parameter filter, specify

”host”:”<your proxy>”

get()

Available since version: 1.8
This function allows you to retrieve proxy details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
proxyids array Proxy IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by proxy fields
search array Return proxies by any given proxy

object field pattern
startSearch integer Search proxies field pattern only in start

of the field
excludeSearch integer Exclude from result, proxies by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

countOutput integer Count proxies, return the number of
proxies found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by proxy field Values: hostid,host,status
sortorder string Sort order Values: ASC, DESC
limit int max number of proxy objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Proxy objects.
error In case of any errors

Example Get proxys details by proxy name pattern ”proxy”:

{
"jsonrpc":"2.0",
"method":"proxy.get",
"params":{

"output":"extend",
"search":{

"host":["proxy"]
}

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",

413

"id":2
}

Retrieved proxy details:

{
"jsonrpc":"2.0",
"result":[{

"proxyid":"100100000010017",
"host":"Linux Proxy",
"status":"0"

},{
"proxyid":"100100000010229",
"host":"ZABBIX Proxy",
"status": 6

}],
"id":2
}

Screen

Methods Class containing methods for operations with Screens.

Methods Description

get() Get screen details
exists() Check if screen exists
create() Create screens
update() Update screen details
delete() Delete screens

Object details The table contains complete list of Screen attributes.

screen

Parameter Type Description Details

screenid integer Screen ID
name integer Name
hsize integer Horizontal size
vsize integer Vertical size

screenitem

Parameter Type Description Details

screenid integer
resourcetype integer Screen item type
x integer X position
y integer Y position
resourceid integer Depends on screen item type
width integer Width
height integer Height
colspan integer Column span
rowspan integer Row span
elements integer Number of displayed lines
valign integer Vertical align
halign integer Horizontal align
style integer Depends on screen item type
url integer Opens URL on click

414

Parameter Type Description Details

dynamic integer Dynamic screen items

Common tasks The table contains list of common screen-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a screen Use method screen.create
Add a bunch of new screens Use method screen.create with array of Screen objects
Remove screen by Screen IDs Use method screen.delete array of Screen IDs
Retrieve screen details by Screen IDs Use method screen.get with parameter screenids
Retrieve screen details by Screen name Use method screen.get with parameter filter, specify

”name”:”<your screen>”

create()

This function allows you to create a screen as defined by the screen data array.

Parameters

Parameter Type Optional Description Details

screen data array or
object

Array of Screen objects with
additional parameter
screenitems

screenid shouldn’t
be specified

screenitems data array or
object

array of screen item objects

Returns

Parameter Description

result Operation successful. Result will contain array of created Screen
IDs. screenid are assigned to each Screen object

error In case of any errors

Example Create new screen

{
"jsonrpc":"2.0",
"method":"screen.create",
"params":[{

"name":"ZABBIX Server",
"hsize":"2",
"vsize":"4",
"screenitems":[{

"resourcetype":"2",
"resourceid":"100100000000002",
"width":"0",
"height":"0",
"x":"0",
"y":"0",
"colspan":"2",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",

415

"dynamic":"0"
},{

"resourcetype":"0",
"resourceid":"100100000000002",
"width":"400",
"height":"100",
"x":"0",
"y":"1",
"colspan":"0",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",
"dynamic":"1"

},{
"resourcetype":"0",
"resourceid":"100100000000003",
"width":"400",
"height":"100",
"x":"0",
"y":"3",
"colspan":"0",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",
"dynamic":"0"

},{
"resourcetype":"0",
"resourceid":"100100000000004",
"width":"400",
"height":"100",
"x":"1",
"y":"3",
"colspan":"0",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",
"dynamic":"0"

},{
"resourcetype":"0",
"resourceid":"100100000000005",
"width":"400",
"height":"100",
"x":"1",
"y":"2",
"colspan":"0",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",
"dynamic":"0"

},{

416

"resourcetype":"0",
"resourceid":"100100000000587",
"width":"500",
"height":"100",
"x":"1",
"y":"1",
"colspan":"0",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",
"dynamic":"0"

},{
"resourcetype":"7",
"resourceid":"0",
"width":"500",
"height":"100",
"x":"0",
"y":"2",
"colspan":"0",
"rowspan":"0",
"elements":"0",
"valign":"0",
"halign":"0",
"style":"0",
"url":"",
"dynamic":"0"

}]
}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

Screen created successfully:

{
"jsonrpc":"2.0",
"result":{

"screenids":["100100000012213"]
},
"id":2
}

Screen already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CScreen::create] Screen [ZABBIX Server] already exists"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several screens. Screen items will be removed.

417

Parameters Array of Screen IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Screen
IDs.

error In case of any errors

Example Delete screens by screen ID

{
"jsonrpc":"2.0",
"method":"screen.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Screens deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"screenids": ["107824", "107825"]
},
"id":2
}

Screens does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CScreen::delete] Screen does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether screen with given screen data exists.

Parameters

Parameter Type Optional Description Details

nodeids array Yes List of node IDs where to search for given screen
screenid string Yes Screen name
name string Yes Screen name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

418

Example Check if screen with name ”ZABBIX Server” exists

{
"jsonrpc":"2.0",
"method":"screen.exists",
"params":{

"name": "ZABBIX Server"
},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Screen exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve Screen details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
screenids array Screen IDs
screenitemids array Screen item IDs
type integer Screen type
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by screen fields
search array Return screens by any given object field

pattern
startSearch integer Search screens field pattern only in

start of the field
excludeSearch integer Exclude from result, screens by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_screenitems string Select screen items Values: shorten, refer,
extend

countOutput integer Count screens, return the number of
screens found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by Screen field Values: screenid, name
sortorder string Sort order Values: ASC, DESC
limit integer max number of screen objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Screen objects.

419

Parameter Description

error In case of any errors

Example Get screens details by screen name pattern ”zabbix”:

{
"jsonrpc":"2.0",
"method":"screen.get",
"params":{

"search": {"name": "zabbix"},
"output": "extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved screen details:

{
"jsonrpc":"2.0",
"result":[{

"screenid":"100100000000002",
"name":"Zabbix server",
"hsize":"2",
"vsize":"4"

},{
"screenid":"100100000000007",
"name":"ZABBIX",
"hsize":"1",
"vsize":"1"

}],
"id":2
}

update()

Available since version: 1.8
The method is used to control all screen attributes including screen screens.

Parameters

Parameter Type Optional Description Details

screenid string Screen ID.
screen attribute any Yes New value for a screen attribute.
screenitems any Yes New screen item list.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Screen
IDs.

error In case of any errors

Example Set screen name to ”New Name”:

{
"jsonrpc":"2.0",
"method":"screen.update",
"params":{

420

"screenid": "100100000010092",
"name": "New Name"

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated screen IDs:

{
"jsonrpc":"2.0",
"result": {

"screenids":["100100000010092"]
},
"id":2

}

Script

Methods Class containing methods for operations with Scripts.

Methods Description

get() Get script details
execute() Check if script exists
create() Create scripts
update() Update script details
delete() Delete scripts

Object details The table contains complete list of Script attributes.

Parameter Type Description Details

scriptid int Script ID
name string Script description
command string Command to execute
host_access integer Needed host access for script execution
usrgrpid integer User group ID
groupid integer Host group ID

Common tasks The table contains list of common script-related tasks and possible implementation using Zabbix API

Task HOWTO

Add an script Use method script.create
Add a bunch of new scripts Use method script.create with array of Script objects
Retrieve script details by Script IDs Use method script.get with parameter scriptids
Retrieve scripts details by Host name Use method script.get with parameter filter, specify ”name”:

[”<your script>”]

create()

This function allows you to create a script as defined by the script data array.

Parameters

421

Parameter Type Optional Description Details

script data array or
object

Array of Script objects or a
single object

scriptid shouldn’t
be specified

Returns

Parameter Description

result Operation successful. Result will contain array of created Script
IDs. scriptid are assigned to each Script object

error In case of any errors

Example Create new script for all hosts and host groups:

{
"jsonrpc":"2.0",
"method":"script.create",
"params":{

"name":"Ping",
"command":"\/bin\/ping -c 3 {HOST.CONN}",
"host_access":"2",
"usrgrpid":"0",
"groupid":"0"

},
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

Script created successfully:

{
"jsonrpc":"2.0",
"result":{

"scriptids": ["100100000214797"]
},
"id":2
}

Script already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CScript::create] Cannot create Script"

},
"id":2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several scripts. All script-related information will be removed including
triggers, empty graphs, child scripts, historical data.

Parameters Array of Script IDs

Returns

422

Parameter Description

result Operation successful. Result will contain array of deleted Script IDs.
error In case of any errors

Example Delete scripts by script ID

{
"jsonrpc":"2.0",
"method":"script.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Scripts deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"scriptids": ["107824", "107825"]
},
"id":2
}

Scripts does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CScript::delete] Script does not exist"

},
"id":2
}

execute()

get()

Available since version: 1.8
This function allows you to retrieve script details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
hostids array Host IDs
scriptids array Script IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by script fields
search string Return scripts by given script fields

pattern
startSearch integer Search given patterns only in start of

the field

423

Parameter Type Description Details

excludeSearch integer Exclude from result scripts by given
patterns

searchWildcardsEnabled integer Search pattern in whole field using
wildcards

1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_groups string Select host groups Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

countOutput integer Count scripts, return number of scripts
found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by script field Values: scriptid, name
sortorder string Sort order Values: ASC, DESC
limit int max number of script objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of Script objects.
error In case of any errors

Example Get scripts details by script description pattern ”Apache” and limit output to 10 scripts, return only script IDS:

{
"jsonrpc":"2.0",
"method":"script.get",
"params":{

"filter": {"name": "TEST"},
"output": "extend",
"limit": 1

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved scripts details:

{
"jsonrpc":"2.0",
"result":[{

"groups":[{
"groupid":"0"

}],
"scriptid":"100100000000006",
"name":"TEST",
"command":"\/bin\/ping -c 3 {HOST.CONN}",
"host_access":"3",
"usrgrpid":"100100000000002",
"groupid":"0"

}],
"id":2
}

update()

424

Available since version: 1.8
The method is used to control all script attributes including script applications linkage.

Parameters

Parameter Type Optional Description Details

scriptid string Script ID.
script attribute any Yes New value for a script attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Script
IDs.

error In case of any errors

Example Change command for script, .i.e set its command to ’<your command>’:

{
"jsonrpc":"2.0",
"method":"script.update",
"params":{

"scriptid": "100100000010092",
"command": "\/bin\/fping -c 10 {HOST.CONN}"

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated script IDs:

{
"jsonrpc":"2.0",
"result": {

"scriptids":["100100000010092"]
},
"id":2

}

Template

Class containing methods for operations with Templates

Methods Class containing methods for operations with Templates.

Methods Description

get() Get template details
exists() Check if template exists
create() Create templates
update() Update template details
delete() Delete templates
massAdd() Mass add template linkage, hosts, macros, host groups
massUpdate() Mass update template details, link templates, hosts, add host groups
massRemove() Mass remove template linkage, hosts, macros, host groups

Object details The table contains complete list of Template attributes.

425

Parameter Type Description Details

templateid int Template ID
host string Template name.
groupids array HostGroup IDs add Template to.

Common tasks The table contains list of common template-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a template Use method template.create
Add a bunch of new templates Use method template.create with array of Template objects
Link template to hosts Use method template.massAdd with parameters templates,

hosts
Unlink template from hosts Use method template.massRemove with parameters

templates, hosts

create()

This function allows you to create a template as defined by the template data array.

Parameters

Parameter Type Optional Description Details

template data array or
object

Array of Template objects or a
single object

templateid
shouldn’t be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of created Template
IDs. templateid are assigned to each Template object

error In case of any errors

{
"jsonrpc":"2.0",
"method":"template.create",
"params":{

"host":"Template Linux 2",
"groups":[

{
"groupid":"100100000000001"

}
],
"templates":[

{
"templateid":"100100000010001"

}
]

},
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Example Template added successfully:

426

{
"jsonrpc":"2.0",
"result":{

"templateids":["100100000014794"]
},
"id":3
}

Template already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CTemplate::create] Template [Template Linux 2] already exists"

},
"id":3
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several templates. All template-related information will be removed
including items, graphs, macros, application, etc.

Parameters

Parameter Type Optional Description Details

templateids array Array of Template IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Template
IDs.

error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"template.delete",
"params":[

{
"templateid":107824

},
{

"templateid":107825
}

],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Templates deleted successfully:

{
"jsonrpc":"2.0",
"result":{

427

"templateids": ["107824", "107825"]
},
"id":2
}

Template does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CTemplate::delete] Template does not exist"

},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether template with given template name or template ID exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to
search for given template ID or
template name

hostid string yes Template ID
host string yes Template name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"template.exists",
"params":{

"nodeids": ["1"],
"host": "Template Linux"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Template exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

428

get()

Available since version: 1.8
This function allows you to retrieve template details based on filtering options. All parameters are optional. If parameter is set in
query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array TemplateGroup IDs
templateids array Template IDs
parentTemplateids array Parent template IDs
hostids array Host IDs
itemids array Item IDs
triggerids array Trigger IDs
graphids array Graph IDs
proxyids array Proxy IDs
maintenanceids array Maintenance IDs
with_items integer only with items
with_triggers integer only with triggers
with_graphs integer only with graphs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by template fields
search array Return templates by any given

template object field pattern
startSearch integer Search templates field pattern only in

start of the field
excludeSearch integer Exclude from result, templates by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_groups string Select template groups Values: shorten, refer,
extend

selectParentTemplates string Select parent templates of current
template

Values: shorten, refer,
extend

select_templates string Select child templates of current
template

Values: shorten, refer,
extend

select_hosts string Select linked hosts Values: shorten, refer,
extend

select_items string Select template items Values: shorten, refer,
extend

select_triggers string Select template triggers Values: shorten, refer,
extend

select_graphs string Select template graphs Values: shorten, refer,
extend

select_applications string Select template applications Values: shorten, refer,
extend

select_macros string Select template macros Values: shorten, refer,
extend

countOutput integer Count templates, return the number of
templates found

groupCount integer Return the number of results grouped
by given IDs

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by template field Values: hostid, host

429

Parameter Type Description Details

sortorder string Sort order Values: ASC, DESC
limit int max number of template objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of Template objects.
error In case of any errors

Example Get templates details by template name ”Template Linux”:

{
"jsonrpc":"2.0",
"method":"template.get",
"params":{

"output":"extend",
"filter":{

"host":"Template_Linux"
}

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved template details:

{
"jsonrpc":"2.0",
"result":[
{

"templateid":"100100000010001",
"hostid":"100100000010001",
"proxy_hostid":"0",
"host":"Template_Linux",
"dns":"",
"useip":"0",
"ip":"",
"port":"10050",
"status":"3",
"disable_until":"0",
"error":"",
"available":"0",
"errors_from":"0",
"lastaccess":"0",
"inbytes":"0",
"outbytes":"0",
"useipmi":"0",
"ipmi_port":"623",
"ipmi_authtype":"0",
"ipmi_privilege":"2",
"ipmi_username":"",
"ipmi_password":"",
"ipmi_disable_until":"0",
"ipmi_available":"0",
"snmp_disable_until":"0",
"snmp_available":"0",
"maintenanceid":"0",
"maintenance_status":"0",
"maintenance_type":"0",
"maintenance_from":"0",

430

"ipmi_ip":"127.0.0.1",
"ipmi_errors_from":"0",
"snmp_errors_from":"0",
"ipmi_error":"",
"snmp_error":""

}
],
"id":2
}

massAdd()

Available since version: 1.8
Mass add template linkage, host linkage, macros, host groups

Parameters multidimensional array with data

Parameter Type Optional Description Details

templates array Template objects to update
templates_link array Yes Template objects which should

be linked to templates.
hosts array Yes Host objects which should be

linked to templates.
groups array Yes Host group objects where

templates should be added.
macros array Yes Macros objects which should

be added to templates.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Template
IDs.

error In case of any errors

Example Link two Hosts to template with ID ”100100000010001”, and add this template to group with ID ”100100000000041”

{
"jsonrpc":"2.0",
"method":"template.massAdd",
"params":{

"templates": [{"templateid": "100100000010001"}],
"groups": [{"groupid": "100100000000041"}],
"hosts": [{"hostid": "100100000010092"},{"hostid": "100100000011197"}]

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Templates updated successfully:

{
"jsonrpc":"2.0",
"result":{

"templateids":["100100000010001"]
},
"id":2
}

431

massRemove()

Available since version: 1.8
Mass remove template linkage, host linkage, macros, host groups

Parameters multidimensional array with data

Parameter Type Optional Description Details

templateids array Templateids to update
templateids_link array Yes Templateids which should be

unlinked from templates.
hostids array Yes Hostids which should be

unlinked from templates.
groupids array Yes Host groupids where

templates should be removed.
macros array Yes Macros which should be

removed from templates.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Template
IDs.

error In case of any errors

Example Unlink two Hosts from template with ID ”100100000010001”, and remove this template from group with ID
”100100000000041”

{
"jsonrpc":"2.0",
"method":"template.massRemove",
"params":{

"templateids": ["100100000010001"],
"groupids": ["100100000000041"],
"hostids": ["100100000010092","100100000011197"]

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Templates updated successfully:

{
"jsonrpc":"2.0",
"result":{

"templateids":["100100000010001"]
},
"id":2
}

massUpdate()

Available since version: 1.8
==== Parameters ==== multidimensional array with Templates data

432

Parameter Type Optional Description Details

templates array Template objects to update
host string Yes Template name.
groups array Yes Update templates Host Group

linkage. Missing objects will be
linked, existed stay, others
unlinked

hosts array Yes Update templates Hosts
linkage. Missing objects will be
linked, existed stay, others
unlinked

macros array Yes Update templates Macros.
Missing objects will be added,
existed updated, others
removed

templates_link array Yes Update templates Template
linkage. Missing objects will be
linked, existed stay, others
unlinked

templates_clear array Yes Templates that should be
unlinked and cleared.

Returns

Parameter Description

result Operation successful. Result will contain array of updated
Template IDs.

error In case of any errors

Example Update template with ID ”100100000014792” so:

1. Add to group, and remove from others
2. Link host to this template and unlink others
3. Unlink and clear linked template

{
"jsonrpc":"2.0",
"method":"template.massUpdate",
"params":{

"templates": [{"templateid": "100100000014792"}],
"groups": [{"groupid": "100100000000041"}],
"hosts": [{"hostid": "100100000010092"}],
"templates_clear": [{"templateid": 100100000010232}]

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Templates updated successfully:

{
"jsonrpc":"2.0",
"result":{

"templateids":["100100000014792"]
},
"id":2
}

433

update()

Available since version: 1.8
Themethod is used to control all template attributes including template template linkage, macros and template groupmembership.
The method is a wrapper for template.massUpdate function.

Parameters

Parameter Type Optional Description Details

templateid string Template name.
host any Yes New name for a template.
groups array Yes Update templates Host Group

linkage. Missing objects will be
linked, existed stay, others
unlinked

hosts array Yes Update templates Hosts
linkage. Missing objects will be
linked, existed stay, others
unlinked

macros array Yes Update templates Macros.
Missing objects will be added,
existed updated, others
removed

templates array Yes Update templates Template
linkage. Missing objects will be
linked, existed stay, others
unlinked

templates_clear array Yes Templates that should be
unlinked and cleared.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Template
IDs.

error In case of any errors

Example Change template name, link it to two hosts and unlink from others

{
"jsonrpc":"2.0",
"method":"template.update",
"params":[{

"templateid": "100100000014792",
"host": "T1",
"hosts": [{"hostid": "100100000010226" },{"hostid": "100100000010092"}]

}],
"auth":"700ca65537074ec963db7efabda78259",
"id":2
}

Retrieved updated template IDs:

{
"jsonrpc":"2.0",
"result": {

"templateids":["100100000014792"]
},
"id":2
}

434

Trigger

Methods Class containing methods for operations with Triggers.

Methods Description

get() Get trigger details
exists() Check if trigger exists
create() Create triggers
update() Update trigger details
delete() Delete triggers
addDependencies() Delete triggers
deleteDependencies() Delete triggers

Object details The table contains complete list of Trigger attributes.

Parameter Type Description Details

triggerid integer Trigger ID
description string Trigger name
expression string Expression
url string Referenced URL
status integer Status
value integer State
priority integer Severity
lastchange integer Time of last state change
dep_level integer Dependency level
comments integer Description
error integer Error
templateid integer Parent trigger ID
type integer Event generation

Field values

Status

Value Type

0 Trigger is active
1 Trigger is disabled

Value

Value Type

0 OK
1 PROBLEM
2 UNKNOWN

Priority

Value Type

0 Not classified
1 Information
2 Warning
3 Average
4 High

435

Value Type

5 Disaster

Type

Value Type

0 Normal event generation
1 Generate multiple PROBLEM events

Common tasks The table contains list of common trigger-related tasks and possible implementation using Zabbix API

Task HOWTO

Add an trigger Use method trigger.create
Add a bunch of new triggers Use method trigger.create with array of Trigger objects
Enable an trigger Use method trigger.update, set ”status”:0
Disable an trigger Use method trigger.update, set ”status”:1
Retrieve trigger details by Trigger IDs Use method trigger.get with parameter triggerids
Retrieve triggers details by Host name Use method trigger.get with parameter filter, specify ”host”:

[”<your host1>”]

addDependencies()

This function allows you to create trigger dependencies.

Parameters Array of hashes

Parameter Type Optional Description Details

triggerid integer Child trigger ID
dependsOnTriggerid integer Parent trigger ID

Returns

Parameter Description

result Operation successful. Result will contain array of updated Trigger
IDs.

error In case of any errors

Example Add dependencies to trigger with trigger ID ”100100000064544”, so it would depend on triggers with trigger ID
”100100000064537” and ”100100000064538”

{
"jsonrpc":"2.0",
"method":"trigger.addDependencies",
"params":[

{
"triggerid": "100100000064544",
"dependsOnTriggerid": "100100000064537"

},
{

"triggerid": "100100000064544",
"dependsOnTriggerid": "100100000064538"

}
],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

436

Trigger updated successfully:

{
"jsonrpc":"2.0",
"result":{

"triggerids": ["100100000064544"]
},
"id":2
}

create()

This function allows you to create a trigger as defined by the trigger data array.

Parameters

Parameter Type Optional Description Details

trigger data array or
object

Array of Trigger objects or a
single object

triggerid
shouldn’t be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of created Trigger
IDs. triggerid are assigned to each Trigger object

error In case of any errors

Example Create new trigger for host ”ZABBIX-Server” and enable it

{
"jsonrpc": "2.0",
"method": "trigger.create",
"params": [{

"description": "TEST_MACRO",
"expression": "{ZABBIX-Server:vfs.fs.inode[/,{$MACRO}].max(\"{$MACRO2}\")}={$MACRO3}",
"status": 0

}],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2
}

Trigger created successfully:

{
"jsonrpc": "2.0",
"result": {

"triggerids": ["100100000214797"]
},
"id": 2
}

Trigger already exists:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "[CTrigger::create] Cannot create Trigger"

},

437

"id": 2
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several triggers. All trigger-related information will be removed including
events, map elements, IT services, action conditions dependencies.

Parameters Array of Item IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted Host IDs.
error In case of any errors

Example Delete triggers by trigger ID

{
"jsonrpc":"2.0",
"method":"trigger.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Triggers deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"triggerids": ["107824", "107825"]
},
"id":2
}

Triggers does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CTrigger::delete] Trigger does not exist"

},
"id":2
}

deleteDependencies()

This function allows you to remove trigger dependencies.

Parameters

Parameter Type Optional Description Details

438

Parameters

Parameter Type Optional Description Details

trigger data array or
object

Array of Trigger objects or a
single object

triggerid must be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of updated Trigger
IDs.

error In case of any errors

Example Remove all dependencies from triggers with trigger ID ”100100000064544” and ”100100000064545”

{
"jsonrpc":"2.0",
"method":"trigger.deleteDependencies",
"params":[

{"triggerid": "100100000064544"},
{"triggerid": "100100000064545"}

],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":2
}

Triggers updated successfully:

{
"jsonrpc":"2.0",
"result":{

"triggerids":["100100000064544","100100000064545"]
},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether trigger with given trigger data exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to search for given item
description string No Trigger description
expression string No Trigger expression
hostid string yes Host ID
host string yes Host name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

439

Example Check if trigger with description ”APC: SystemUPS Load” and expression ”{TEST_hp3000:vfs.file.cksum[c:\config.sys].last(0)}=0”
exists

{
"jsonrpc":"2.0",
"method":"trigger.exists",
"params":{

"host":"ZABBIX-Server",
"description":"Apache is not running on {HOSTNAME}",
"expression":"{ZABBIX-Server:proc_cnt[httpd].last(0)}<1"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Trigger exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve trigger details based on filtering options. All parameters are optional. If parameter is set in
query, this option is considered as being ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array HostGroup IDs
templateids array Template IDs
hostids array Host IDs
triggerids array Trigger IDs
itemids array Item IDs
applicationids array Application IDs
functions array Trigger functions
inherited integer Inherited from template s ”0” - not inherited, ”1” -

inherited
templated integer Templated triggers ”0” - belongs to hosts,

”1” - belongs to
templates

monitored integer Monitored triggers Checks trigger, item and
host status

active integer Monitored triggers Checks trigger and host
status

maintenance integer Triggers in maintenance
withUnacknowledgedEvents integer Triggers with unacknowledged events
withAcknowledgedEvents integer Triggers with acknowledged events
withLastEventUnacknowledged integer Triggers with last unacknowledged

events
skipDependent integer Do not select dependent triggers in

PROBLEM state
editable integer only with read-write permission.

Ignored for SuperAdmins
lastChangeSince string Optional filter by last changed state

time
lastChangeTill string Optional filter by last changed state

time

440

Parameter Type Description Details

group string Optional filter by host group name
host string Optional filter by host name
only_true string Triggers in state PROBLEM and recently

switched (30 min)
min_severity string Optional filter by severity
filter array Optional filter by trigger fields
search array Return triggers by any given object field

pattern
startSearch integer Search triggers field pattern only in

start of the field
excludeSearch integer Exclude from result, triggers by given

field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

expandData string Adds additional fields to triggers default host, hostid
expandDescription string Expands trigger description Expands macros
select_groups string Select host groups Values: shorten, refer,

extend
select_hosts string Select hosts Values: shorten, refer,

extend
select_items string Select trigger items Values: shorten, refer,

extend
select_functions string Select trigger functions Values: shorten, refer,

extend
select_dependencies string Select trigger dependencies Values: shorten, refer,

extend
countOutput integer Count triggers, return the number of

triggers found
groupCount integer Return the number of results grouped

by given IDs
preservekeys integer Return hash instead of array Keys of hash are object

IDs
sortfield string Sort by trigger field Values: trig-

gerid,description,status,priority,lastchange
sortorder string Sort order Values: ASC, DESC
limit int max number of trigger objects to return

Returns

Parameter Description

result Operation successful. Result will contain array of trigger objects.
error In case of any errors

Example Get triggers details by trigger descriptions ”APC: System UPS Global State”, ”APC: System UPS Load” in host ”ZABBIX-
Server”:

{
"jsonrpc": "2.0",
"method": "trigger.get",
"params": {

"filter": {
"host": ["ZABBIX-Server"],
"description": ["APC: System UPS Global State", "APC: System UPS Load"]

},
"output": "extend"

},
"auth": "6f38cddc44cfbb6c1bd186f9a220b5a0",

441

"id": 2
}

Retrieved trigger details:

{
"jsonrpc": "2.0",
"result": [{

"triggerid": "100100000013502",
"expression": "{100100000013078}=0",
"description": "APC: System UPS Global State",
"url": "",
"status": "0",
"value": "2",
"priority": "1",
"lastchange": "1277987805",
"dep_level": "0",
"comments": "System UPS Global State",
"error": "Zabbix was restarted.",
"templateid": "0",
"type": "0"

},
{

"triggerid": "100100000013503",
"expression": "{100100000013077}=0",
"description": "APC: System UPS Load",
"url": "",
"status": "0",
"value": "2",
"priority": "2",
"lastchange": "1273213952",
"dep_level": "0",
"comments": "System UPS Load",
"error": "Host is unavailable.",
"templateid": "0",
"type": "0"

}],
"id": 2
}

update()

Available since version: 1.8
The method is used to control all trigger attributes including trigger applications linkage.

Parameters

Parameter Type Optional Description Details

triggerid string Trigger ID.
trigger attribute any Yes New value for a trigger attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated Trigger
IDs.

error In case of any errors

442

Example Enable trigger, .i.e set its status to ’0’:

{
"jsonrpc":"2.0",
"method":"trigger.update",
"params":[{

"triggerid": "100100000010092",
"status": 0

}],
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated trigger IDs:

{
"jsonrpc":"2.0",
"result": {

"triggerids":["100100000010092"]
},
"id":2

}

User

Methods Class containing methods for operations with users. Only super admins have access to all users.

Methods Description

get() Get user details
create() Create users
update() Update user details
updateProfile() Update user profile
delete() Delete users
addMedia() Add user media
updateMedia() Update user media
deleteMedia() Remove user media
authenticate() Authenticate
login() Login
logout() Logout

Object details

User The table contains complete list of user attributes.

Parameter Type Description Details

userid integer User ID
alias string Login
name string Name
surname string Surname
passwd string Password md5
url string Url to open after user login
autologin integer Auto login
autologout integer Auto logout In seconds, 0 - disabled
lang string Locale
refresh integer Page refresh period
type integer User type
theme string Theme
attempt_failed integer Number of failed login attempts
attempt_ip string Last used IP to login

443

Parameter Type Description Details

attempt_clock integer Last login attempt date
rows_per_page integer Rows per page to show

User Media The table contains complete list of user media attributes.

Parameter Type Description Details

mediaid integer User media ID
userid integer User ID
mediatypeid integer User media type ID
sendto string Where to send
active integer Enabled or disabled this media
severity integer Trigger severity bit arithmetics
period string User media period

Common tasks The table contains list of common user-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a user Use method user.create
Add a bunch of new users Use method user.create with array of User objects
Rename user Use method user.update, set ”name”:”<new name>”
Retrieve user details by User IDs Use method user.get with parameter userids
Retrieve user details by User alias Use method user.get with parameter filter, specify

”alias”:”<user alias>”

addMedia()

Available since version: 1.8

Parameters Multidimensional array with user data and user media data.

Parameter Type Optional Description Details

users array User objects to update
medias array Yes Media objects, which should be added to users.

Returns

Parameter Description

result Operation successful. Result will contain an array of updated user
IDs.

error In case of any errors.

Example Add two enabled media to user with ID ”100100000010092”

{
"jsonrpc":"2.0",
"method":"user.addMedia",
"params":{
"users": [
{ "userid": "100100000010092" }

],
"medias": [

444

{"mediatypeid": "100100000000001", "sendto": "zabbix@test.com", "active": "0", "severity": "56", "period": "5-7,09:00-17:00;"},
{"mediatypeid": "100100000000002", "sendto": "zabbix@test.com", "active": "0", "severity": "63", "period": "1-5,07:00-19:00;"}

]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

User media added successfully:

{
"jsonrpc":"2.0",
"result":{

"userids":["100100000010092"]
},
"id":2
}

authenticate()

Available since version: 1.8

Attention:
Note: This method is obsolete. Use method user.login instead.

create()

This function allows you to create a user as defined by the user data array. Available only to super admins.

Parameters

Parameter Type Optional Description Details

user data array or
object

No Array of user objects or a
single object

userid shouldn’t
be specified

usrgrps array No User groups to add user to.
user_medias array No Create user media for user.

Returns

Parameter Description

result Operation successful. Result will contain an array of created user
IDs. userid is assigned to each user object.

error In case of any errors.

Example Create new user and add it to 3 user groups. Password ”zabbix” will automatically be encoded by MD5 hash function.

{
"jsonrpc":"2.0",
"method":"user.create",
"params":[{

"usrgrps":[{
"usrgrpid":"100100000000009",
"name":"Internal login"

},{
"usrgrpid":"100100000000020",
"name":"API access"

445

},{
"usrgrpid":"100100000000022",
"name":"Debug group"

}],
"alias":"Test User",
"name":"Test User Name",
"surname":"Test User Surname",
"passwd":"zabbix",
"url":"",
"autologin":"0",
"autologout":"600",
"lang":"en_gb",
"refresh":"90",
"type":"1",
"theme":"css_ob.css",
"attempt_failed":"0",
"attempt_ip":"",
"attempt_clock":"0",
"rows_per_page":"50"

}],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

User added successfully:

{
"jsonrpc":"2.0",
"result":{

"userids": ["107819"]
},
"id":3
}

User already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CUser::create] User [Admin] already exists"

},
"id":3
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several users. All user-related information will be removed. Method
available only to super admins.

Parameters Array of User IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted User IDs.
error In case of any errors

446

Example Delete users by User ID

{
"jsonrpc":"2.0",
"method":"user.delete",
"params":[

{
"userid":"107824"

},
{

"userid":"107825"
}

],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Users deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"userids": ["107824", "107825"]
},
"id":2
}

User does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CUser::delete] User does not exist"

},
"id":2
}

deleteMedia()

Available since version: 1.8

Parameters Array with media data, media ID must be specified.

Parameter Type Optional Description Details

medias array Yes Media objects which should be deleted (removed / added).

Returns

Parameter Description

result Operation successful. Result will contain an array of deleted user
media IDs.

error In case of any errors

Example Remove two user media from user with ID ”100100000010092”

{
"jsonrpc":"2.0",

447

"method":"user.deleteMedia",
"params":[
{"mediaid": "100100000000011"},
{"mediaid": "100100000000012"}

],
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

User media deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"mediaids":["100100000000011", "100100000000012"]
},
"id":2
}

get()

Available since version: 1.8
This function allows you to retrieve user details based on filtering options. All parameters are optional. If parameter is set in query
this option counted as ON, except if parameter is equal to NULL, Only super admins have access to all users. Admin users may
see only users sharing the same user groups. Simple users may gain info only about them selfs.

Parameters

Parameter Type Description Details

nodeids array Node IDs
usrgrpids array User Group IDs
userids array User IDs
mediaids array Media IDs
mediatypeids array Media type IDs
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by user fields
search array Return users by any given object field

pattern
startSearch integer Search users field pattern only in start

of the field
excludeSearch integer Exclude from result, users by given field

pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_usrgrps string Select user groups Values: refer, extend
select_mediatypes string Select user media types Values: refer, extend
get_access string Get additional info about user access to

GUI
Values: shorten, refer,
extend

countOutput integer Count users, return the number of users
found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by user field Values: userid, alias
sortorder string Sort order Values: ASC, DESC
limit int max number of user objects to return

Returns

448

Parameter Description

result Operation successful. Result will contain array of User objects.
error In case of any errors

Example Get users details by user alias ”Admin”:

{
"jsonrpc":"2.0",
"method":"user.get",
"params":{

"filter":{ "alias":["Admin"] },
"output":"extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

Retrieved user details:

{
"jsonrpc":"2.0",
"result":[{

"userid":"100100000000001",
"alias":"Admin",
"name":"admin",
"surname":"admin",
"url":"",
"autologin":"1",
"autologout":"0",
"lang":"en_gb",
"refresh":"2000",
"type":"3",
"theme":"css_od.css",
"attempt_failed":"0",
"attempt_ip":"127.0.0.1",
"attempt_clock":"1281014721",
"rows_per_page":"100"

}],
"id":2
}

login()

Available since version: 1.8
This function allows you to login to ZABBIX based on accepted parameters. This method mainly used for login from scripts with
retrieving only authentication token. All parameters are mandatory.

Parameters

Parameter Type Description Details

user string User login name
password string User login password

Returns

Parameter Description

result Operation successful. Result will contain authentication string.
error In case of any errors

449

Example Login in to ZABBIX by user alias ”Admin” and password ”zabbix”:

{
"jsonrpc":"2.0",
"method":"user.login",
"params":{

"user": "Admin",
"password":"zabbix"

},
"id":1
}

Retrieved user authentication token:

{
"jsonrpc":"2.0",
"result":"a9a1f569d10d6339f23c4d122a7f5c46",
"id":1
}

logout()

update()

Available since version: 1.8
The method is used to control all user attributes including user group linkage. The method is available only to super admins.

Parameters

Parameter Type Optional Description Details

userid string User ID.
user attribute any Yes New value for a user attribute.
usrgrps any Yes New list of user groups.

Returns

Parameter Description

result Operation successful. Result will contain array of updated User IDs.
error In case of any errors

Example Rename user, .i.e set its name to ’New user name’:

{
"jsonrpc":"2.0",
"method":"user.update",
"params":{

"userid": "100100000010092",
"name": "New user name"

},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated user IDs:

{
"jsonrpc":"2.0",
"result": {

450

"userids":["100100000010092"]
},
"id":2

}

updateMedia()

Available since version: 1.8

Parameters Multidimensional array with user data and user media data

Parameter Type Optional Description Details

users array User objects to update
medias array Yes Media objects which should be updated (removed / added).

Returns

Parameter Description

result Operation successful. Result will contain array of updated User IDs.
error In case of any errors

Example Add two user media, remove all current for user with ID ”100100000010092”

{
"jsonrpc":"2.0",
"method":"user.updateMedia",
"params":{
"users": [
{ "userid": "100100000010092" }

],
"medias": [
{"mediatypeid": "100100000000001", "sendto": "zabbix@test.com", "active": "2", "severity": "56", "period": "5-7,09:00-17:00;"},
{"mediatypeid": "100100000000002", "sendto": "zabbix@test.com", "active": "2", "severity": "63", "period": "1-5,07:00-19:00;"}

]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

User media updated successfully:

{
"jsonrpc":"2.0",
"result":{

"userids":["100100000010092"]
},
"id":2
}

updateProfile()

Available since version: 1.8
The method is used to control most user attributes. By this method user may change only it’s own settings.

451

Parameters

Parameter Type Optional Description Details

user attribute any Yes New value for a user attribute. password, url,
autologin,
autologut, locale,
theme, refresh
period, rows per
page

Returns

Parameter Description

result Operation successful. Result will contain array of updated User
Object.

error In case of any errors

Example Change rows per page shown by frontend to 50:

{
"jsonrpc":"2.0",
"method":"user.updateProfile",
"params":{

"rows_per_page": "50"
},
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated user IDs:

{
"jsonrpc":"2.0",
"result": [{

"userid":"100100000000001",
"alias":"Admin",
"name":"admin",
"surname":"admin",
"passwd":"7815696ecbf1c96e6894b779456d330e",
"url":"",
"autologin":"1",
"autologout":"0",
"lang":"en_gb",
"refresh":"2000",
"type":"3",
"theme":"css_od.css",
"attempt_failed":"0",
"attempt_ip":"127.0.0.1",
"attempt_clock":"1281014721",
"rows_per_page":"100"

}],
"id":2
}

Usergroup

Methods Class containing methods for operations with User groups.

452

Methods Description

get() Get user group details
exists() Check if user group exists
create() Create user groups
update() Update user group details
delete() Delete user groups
massAdd() Mass add rights, users to user groups
massUpdate() Mass update user group details, update list of rights, users
massRemove() Mass remove rights, users

Object details

Usrgrp The table contains complete list of User Group attributes.

Parameter Type Description Details

usrgrpid integer User group id
name string Name
gui_access integer GUI access system default(0), internal(1), disabled(2)
users_status integer User status enabled(0), disabled(1)
api_access integer API access disabled(0), enabled(1)
debug_mode integer Debug mode disabled(0), enabled(1)

Rights The table contains complete list of Rights attributes.

Parameter Type Description Details

groupid integer User group ID
id integer Host Group ID.
permission string Permission. deny(0), read(2), read-write(3)

Common tasks The table contains list of common user-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a user group Use method usergroup.create
Add a bunch of new user groups Use method usergroup.create with array of User group objects
Add users to user group Use method usergroup.massAdd with array of user IDs
Add a host group with read-write or read permissions
to user group

Use method usergroup.massAdd with array of rights objects

Retrieve user group details by Group IDs Use method usergroup.get with parameter usrgrpids
Retrieve user group details by User group name Use method usergroup.get with parameter filter, specify

”name”:”<your usergroup>”

create()

This function allows you to create a user group as defined by the user group data array.

Parameters

Parameter Type Optional Description Details

usergroup data array or
object

Array of User group objects or
a single object

usrgrpid shouldn’t
be specified

Returns

453

Parameter Description

result Operation successful. Result will contain array of created User
group IDs. usrgrpid are assigned to each User group object

error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"usergroup.create",
"params":[

{"name":"Debug Group"}
],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

User group created successfully:

{
"jsonrpc":"2.0",
"result":{

"usrgrpids": ["107819"]
},
"id":3
}

User group already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CUserGroup::create] User group [Debug Group] already exists"

},
"id":3
}

delete()

Available since version: 1.8
This function allows you to delete information about one or several user groups.

Parameters

Parameter Type Optional Description Details

usrgrpids array Array of User Group IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted User
Group IDs.

error In case of any errors

454

Example

{
"jsonrpc":"2.0",
"method":"usergroup.delete",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

User Groups deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"usrgrpids": ["107824", "107825"]
},
"id":2
}

exists()

Available since version: 1.8.3
This function allows you to check whether user group with given user group name or user group ID exists.

Parameters

Parameter Type Optional Description Details

nodeids array yes List of node IDs where to
search for given user group ID
or name

usrgrpid string yes User group ID
name string yes User group name

Returns

Parameter Description

result Operation successful. Result will contain boolean variable.
error In case of any errors

Example

{
"jsonrpc":"2.0",
"method":"usergroup.exists",
"params":{

"nodeids": ["1"],
"name": "Admin Group"

},
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

User group exists:

{
"jsonrpc":"2.0",
"result": true,
"id":2
}

455

get()

Available since version: 1.8
This function allows you to retrieve user group details based on filtering options. All parameters are optional. If parameter is set
in query this option counted as ON, except if parameter is equal to NULL.

Parameters

Parameter Type Description Details

nodeids array Node IDs
usrgrpids array UserGroup IDs
userids array User IDs
status boolean
with_gui_access boolean
with_api_access boolean
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by user group fields
search array Return user groups by any given user

group object field pattern
startSearch integer Search user groups field pattern only in

start of the field
excludeSearch integer Exclude from result, user groups by

given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

select_users string Select contained users Values: refer, extend
output string Output options Values: shorten, refer,

extend
countOutput integer Count user groups, return the number

of user groups found
preservekeys integer Return hash instead of array Keys of hash are object

IDs
sortfield string Sort by user group field Values: usrgrpid, name
sortorder string Sort order Values: ASC, DESC
limit int Max number of user group objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of User group
objects.

error In case of any errors

Example Get details for user groups with names ”Debug group”,”Zabbix administrators”, and select users ID in those groups :

{
"jsonrpc":"2.0",
"method":"usergroup.get",
"params":{

"filter":{"name":["Debug group","Zabbix administrators"]},
"select_users":"refer",
"output":"extend"

},
"auth":"6f38cddc44cfbb6c1bd186f9a220b5a0",
"id":2
}

456

Retrieved details for user groups with names ”Debug group”,”Zabbix administrators” :

{
"jsonrpc":"2.0",
"result":[
{

"users":[
{"userid":"100100000000005"}

],
"usrgrpid":"100100000000007",
"name":"Zabbix administrators",
"gui_access":"0",
"users_status":"0",
"api_access":"0",
"debug_mode":"0"

},
{

"users":[
{"userid":"100100000000005"},
{"userid":"100100000000001"},
{"userid":"100100000000003"},
{"userid":"100100000000004"},
{"userid":"100100000000018"}

],
"usrgrpid":"100100000000022",
"name":"Debug group",
"gui_access":"0",
"users_status":"0",
"api_access":"0",
"debug_mode":"1"

}],
"id":2
}

massAdd()

Available since version: 1.8
This method is used to link users or rights with user groups. Available only to super admins.

Parameters Multidimensional array with User groups data

Parameter Type Optional Description Details

usrgrpids array User group IDs.
userids array Yes User IDs. Those users will be

added to all listed
user groups in
request.

rights array Yes Host group rights Those rights will be
added to all listed
user groups in
request.

Returns

Parameter Description

result Operation successful. Result will contain array of updated user
group IDs.

error In case of any errors

457

Example I Add two users with ID ”100100000010092”, ”100100000010086” to user group with ID ”100100000000013”

{
"jsonrpc":"2.0",
"method":"usergroup.massAdd",
"params":{

"usrgrpids": ["100100000000042"],
"userids": ["100100000010092", "100100000010086"],

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

User groups updated successfully:

{
"jsonrpc":"2.0",
"result":{

"usrgrpids":["100100000000042"]
},
"id":2
}

Example II Add read rights on host group with ID ”100100000010092” and read-write rights on host group with ID
”100100000010093” to user group with ID ”100100000000013”

{
"jsonrpc":"2.0",
"method":"usergroup.massAdd",
"params":{

"usrgrpids": ["100100000000043"],
"rights": [

{"permission": 2, "id": "100100000010092"},
{"permission": 3, "id": "100100000010093"}

],
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

User groups updated successfully:

{
"jsonrpc":"2.0",
"result":{

"usrgrpids": ["100100000000043"]
},
"id":2
}

massRemove()

massUpdate()

Available since version: 1.8
This method is used to link users or rights with user groups. Available only to super admins.

Parameters Multidimensional array with User groups data

458

Parameter Type Optional Description Details

usrgrpids array User group IDs.
userids array Yes User IDs. New users will be

added, missed
removed for listed
user groups in
request.

rights array Yes Host group rights New rights will be
added, existed
updated, missed
removed for listed
user groups in
request.

user group attribute any Yes New value for a user group
attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated user
group IDs.

error In case of any errors

Example Update rights on host groups with ID ”100100000010092”, ”100100000010093” for user groupwith ID ”100100000000013”
and rename user group to ”Renamed”

{
"jsonrpc":"2.0",
"method":"usergroup.massUpdate",
"params":{

"usrgrpids": ["100100000000043"],
"rights": [

{"permission": 3, "id": "100100000010092"},
{"permission": 2, "id": "100100000010093"}

],
"name": "Renamed"

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

User groups updated successfully:

{
"jsonrpc":"2.0",
"result":{

"usrgrpids": ["100100000000043"]
},
"id":2
}

update()

Available since version: 1.8
The method is used to control user group attributes.

Parameters

459

Parameter Type Optional Description Details

user group attribute any Yes New value for a user group attribute.

Returns

Parameter Description

result Operation successful. Result will contain array of updated User
group IDs.

error In case of any errors

Example Rename user group:

{
"jsonrpc":"2.0",
"method":"usergroup.update",
"params":[

{"usrgrpid": "100100000000042", "name": "Rename 1"},
{"usrgrpid": "100100000000013", "name": "Rename 2"}

],
"auth":"700ca65537074ec963db7efabda78259",
"id":2

}

Retrieved updated user IDs:

{
"jsonrpc":"2.0",
"result": {
"usrgrpids":["100100000000042","100100000000013"]
},
"id":2

}

Usermacro

Methods Class containing methods for operations with Usermacros.

Methods Description

get() Get usermacro details
createGlobal() Create global usermacros
updateGlobal() Update global usermacros details
deleteGlobal() Delete global usermacros
deleteHostMacro() Delete host usermacros
massAdd() Add usermacros to hosts or templates
massUpdate() Update usermacros for hosts or templates
massRemove() Remove usermacros from hosts or templates

Object details

Host Macro The table contains complete list of Usermacro attributes.

Parameter Type Description Details

hostmacroid integer Host macro ID
hostid integer Host ID
macro string Name Name is unique per single host
value string Value

460

Global Macro The table contains complete list of Global Usermacro attributes.

Parameter Type Description Details

hostmacroid integer Host macro ID
macro string Macro Name is unique for global usermacros
value string Value

Common tasks The table contains list of common usermacro-related tasks and possible implementation using Zabbix API

Task HOWTO

Add a usermacro Use method usermacro.massAdd, set hostids and macro objects
Add a global usermacro Use method usermacro.createGlobal
Retrieve usermacro details by Usermacro IDs Use method usermacro.get with parameter usermacroids
Retrieve usermacro details by Usermacro name Use method usermacro.get with parameter filter, specify

”macro”:”<your usermacro>”

createGlobal()

This method allows you to create a globalmacro as defined by the globalmacro data array.

Parameters

Parameter Type Optional Description Details

globalmacro data array or
object

No Array of Globalmacro objects
or a single object

globalmacroid
shouldn’t be
specified

Returns

Parameter Description

result Operation successful. Result will contain array of created
Globalmacro IDs. globalmacroid are assigned to each
Globalmacro object

error In case of any errors

{
"jsonrpc":"2.0",
"method":"usermacro.createGlobal",
"params":[

{
"macro":"{$MACRO1}",
"value":"192.168.0.1"

},
{

"macro":"{$MACRO2}",
"value":"192.168.0.2"

}
],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Example Globalmacro added successfully:

461

{
"jsonrpc":"2.0",
"result":{

"globalmacroids": ["107819", "107820"]
},
"id":3
}

Globalmacro already exists:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CGlobalmacro::create] Macro [{$MACRO1}] already exists"

},
"id":3
}

deleteGlobal()

Available since version: 1.8
This function allows you to delete information about one or several globalmacros. All globalmacro-related information will be
removed including items, graphs, macros, application, historical data, etc.

Parameters Array of Globalmacro macros

Returns

Parameter Description

result Operation successful. Result will contain array of deleted
Globalmacro IDs.

error In case of any errors

Example Delete globalmacros by macro

{
"jsonrpc": "2.0",
"method": "usermacro.deleteGlobal",
"params": [

"{$MACRO3}",
"{$MACRO4}"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 2
}

Globalmacros deleted successfully:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": ["107824", "107825"]
},
"id": 2
}

Globalmacro does not exist:

462

{
"jsonrpc": "2.0",
"error": {

"code": -32500,
"message": "Application error.",
"data": "[CGlobalmacro::delete] Globalmacro does not exist"

},
"id": 2
}

deleteHostMacro()

Available since version: 1.8
This function allows you to delete information about one or several hostmacros. All hostmacro-related information will be removed
including items, graphs, macros, application, historical data, etc.

Parameters Array of Hostmacro IDs

Returns

Parameter Description

result Operation successful. Result will contain array of deleted
Hostmacro IDs.

error In case of any errors

Example Delete hostmacros by macrohost macro ID

{
"jsonrpc":"2.0",
"method":"usermacro.deleteHostMacro",
"params":["107824", "107825"],
"auth":"3a57200802b24cda67c4e4010b50c065",
"id":2
}

Hostmacros deleted successfully:

{
"jsonrpc":"2.0",
"result":{

"hostmacroids": ["107824", "107825"]
},
"id":2
}

Hostmacro does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CHostmacro::delete] Hostmacro does not exist"

},
"id":2
}

get()

463

Available since version: 1.8
This function allows you to retrieve usermacro details based on filtering options. All parameters are optional. If parameter is set
in query this option counted as ON, except if parameter is equal to NULL,

Parameters

Parameter Type Description Details

nodeids array Node IDs
groupids array Host Group IDs
hostids array Select all macros from the given hosts

and templates.
templateids array Select all host macros from hosts that

are linked to the given templates.
hostmacroids array Host Usermacro IDs
globalmacroids array Host Usermacro IDs
globalmacro integer Search only global macros
editable integer only with read-write permission.

Ignored for SuperAdmins
filter array Optional filter by usermacro fields
search array Return user macros by any given

usermacro object field pattern
startSearch integer Search usermacros field pattern only in

start of the field
excludeSearch integer Exclude from result, usermacros by

given field pattern
searchWildcardsEnabled integer Search pattern in whole field using

wildcards
1 - enable, 0 - disable

output string Output options Values: shorten, refer,
extend

select_groups string Select host groups Values: shorten, refer,
extend

select_hosts string Select hosts Values: shorten, refer,
extend

select_templates string Select templates Values: shorten, refer,
extend

countOutput integer Count usermacros, return the number
of usermacros found

preservekeys integer Return hash instead of array Keys of hash are object
IDs

sortfield string Sort by usermacro field Values: macro
sortorder string Sort order Values: ASC, DESC
limit int max number of usermacro objects to

return

Returns

Parameter Description

result Operation successful. Result will contain array of Usermacro
objects.

error In case of any errors

Example Get host usermacros details by usermacro name ”{$AAA}” in specified host groups ID ”100100000000011”,”100100000000099”,”100100000010034”:

{
"jsonrpc": "2.0",
"method": "usermacro.get",
"params": {

"groupids": ["100100000000011","100100000000099","100100000010034"],
"filter": {"macro": "{$AAA}"},
"output": "extend"

},

464

"auth": "6f38cddc44cfbb6c1bd186f9a220b5a0",
"id": 2
}

Retrieved host usermacro details:

{
"jsonrpc": "2.0",
"result": [{

"groups": [
{"groupid": "100100000000011"}

],
"hosts": [

{"hostid": "100100000010077"}
],
"hostmacroid": "100100000000005",
"hostid": "100100000010077",
"macro": "{$AAA}",
"value": "aaaa"

}],
"id": 2
}

massAdd()

Available since version: 1.8

Parameters Multidimensional array with usermacros data

Parameter Type Optional Description Details

macros array Usermacros to add.
hosts array Yes Host objects that should get added usermacros.
templates array Yes Template objects that should get added usermacros.

NOTE: one of the hosts or templates is required.

Returns

Parameter Description

result Operation successful. Result will contain array of added
host/template usermacro IDs.

error In case of any errors

Example Add two usermacros on two hosts with IDs ”10092”, ”10086” and on two templates with IDs ”10052”, ”10053”:

{
"jsonrpc":"2.0",
"method":"usermacro.massAdd",
"params":{

"macros": [
{"macro": "{$MACRO1}", "value": "MACRO1"},
{"macro": "{$MACRO2}", "value": "MACRO2"}

],
"hosts": [

{"hostid": "10092"},
{"hostid": "10086"}

],

465

"templates": [
{"templateid": "10052"},
{"templateid": "10053"}

]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Host and template usermacros added successfully:

{
"jsonrpc":"2.0",
"result":{

"hostmacroids":["42","43","44","45","46","47","48","49"]
},
"id":2
}

NOTE: host and/or template usermacros will be listed together in the ”hostmacroids” array.

Error when some host or template does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CUserMacro::massUpdate] You do not have permission to perform this operation"

},
"id":2
}

massRemove()

Available since version: 1.8

Parameters Multidimensional array with usermacros data

Parameter Type Optional Description Details

macros array Usermacro to remove.
hostids array Yes Hostids that should have usermacros removed.
templateids array Yes Templateids that should have usermacros removed.

NOTE: one of the hosts or templates is required.

Returns

Parameter Description

result Operation successful. Result will contain array of removed
host/template usermacro IDs.

error In case of any errors

Example Remove two host usermacros from two hosts with IDs ”10092”, ”10086” and from two templates with IDs ”10052”,
”10053”::

466

{
"jsonrpc":"2.0",
"method":"usermacro.massRemove",
"params":{

"macros": ["{$MACRO1}","{$MACRO2}"],
"hostids": ["10092", "10086"],
"templateids": ["10052", "10053"]

},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Host usermacros removed successfully:

{
"jsonrpc":"2.0",
"result":{

"hostmacroids":["42","43","44","45","46","47","48","49"]
},
"id":2
}

NOTE: host and/or template usermacros will be listed together in the ”hostmacroids” array.

Error when some host or template does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CUserMacro::massUpdate] You do not have permission to perform this operation"

},
"id":2
}

massUpdate()

Available since version: 1.8

Parameters Multidimensional array with usermacros data

Parameter Type Optional Description Details

macros array Usermacros to update.
hosts array Yes Host objects where usermacros should be updated.
templates array Yes Template objects where usermacros should be updated.

NOTE: one of the hosts or templates is required.

Returns

Parameter Description

result Operation successful. Result will contain array of updated
host/template usermacro IDs.

error In case of any errors

467

Example Update two usermacros on two hosts with IDs ”10092”, ”10086” and on two templates with IDs ”10052”, ”10053”:

{
"jsonrpc":"2.0",
"method":"usermacro.massUpdate",
"params":{

"macros": [
{"macro": "{$MACRO1}", "value": "MACRO1"},
{"macro": "{$MACRO2}", "value": "MACRO2"}

],
"hosts": [

{"hostid": "10092"},
{"hostid": "10086"}

],
"templates": [

{"templateid": "10052"},
{"templateid": "10053"}

]
},
"auth":"f223adf833b2bf2ff38574a67bba6372",
"id":2
}

Host and template usermacros updated successfully:

{
"jsonrpc":"2.0",
"result":{

"hostmacroids":["42","43","44","45","46","47","48","49"]
},
"id":2
}

NOTE: host and/or template usermacros will be listed together in the ”hostmacroids” array.

Error when some host or template does not exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32500,
"message":"Application error.",
"data":"[CUserMacro::massUpdate] You do not have permission to perform this operation"

},
"id":2
}

updateGlobal()

This method allows you to update a globalmacro as defined by the globalmacro data array.

Parameters

Parameter Type Optional Description Details

globalmacro data array or
object

No Array of Globalmacro objects
or a single object

macro name must
be specified

Returns

468

Parameter Description

result Operation successful. Result will contain array of updated
Globalmacro IDs. globalmacroid are assigned to each
Globalmacro object

error In case of any errors

{
"jsonrpc":"2.0",
"method":"usermacro.updateGlobal",
"params":[

{
"macro":"{$MACRO1}",
"value":"NEW VALUE"

},
{

"macro":"{$MACRO2}",
"value":"NEW VALUE"

}
],
"auth":"038e1d7b1735c6a5436ee9eae095879e",
"id":3
}

Example Globalmacro updated successfully:

{
"jsonrpc":"2.0",
"result":{

"globalmacroids": ["107819", "107820"]
},
"id":3
}

Globalmacro doesn’t exist:

{
"jsonrpc":"2.0",
"error":{

"code":-32602,
"message":"Invalid params.",
"data":"[CGlobalmacro::update] Macro [{$MACRO1}] does not exists"

},
"id":3
}

Example API session

An example Zabbix API session might look like this. See Zabbix API introduction for more details.

Query:

{
"jsonrpc": "2.0",
"method": "user.authenticate",
"params": {

"user": "Admin",
"password": "zabbix"

},
"auth": null,
"id": 0

}

469

Response:

{
"jsonrpc": "2.0",
"result": "13f28ca608a4b12c83a32d749229da71",
"id": 0

}

Query:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": "extend"
},
"auth": "13f28ca608a4b12c83a32d749229da71",
"id": 2

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"maintenances": [

{
"maintenanceid": "0"

}
],
"hostid": "10017",
"proxy_hostid": "0",
"host": "Zabbix server",
"dns": "",
"useip": "1",
"ip": "127.0.0.1",
"port": "10050",
"status": "0",
"disable_until": "0",
"error": "",
"available": "1",
"errors_from": "0",
"lastaccess": "0",
"inbytes": "0",
"outbytes": "0",
"useipmi": "0",
"ipmi_port": "623",
"ipmi_authtype": "0",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_ip": "",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": ""

470

}
],
"id": 2

}

Getting started with Zabbix API

What is Zabbix API

Normally, you have only one way, to manipulate, configure and create objects in Zabbix - through it’s PHP frontend. This is great,
but only until you decide to build something custom: create a batch add/update script, or a custom monitoring tool, or anything
else, that is not provided by default Zabbix GUI interface.

That’s when Zabbix API comes to the rescue. It allows you to create, update and fetch Zabbix objects (like hosts, items, graphs
and others) through JSON RPC protocol and do whatever you like (if you have an account authorized for that, of course).

Zabbix API was introduced in version 1.8 and still is under heavy development. In some parts, functionality is still limited, but it
promises to become much wider with the release of Zabbix 2.0.

Example session For a quick overview, take a look at an example Zabbix API session or read below for detailed explanation.

Using JSON RPC

If you are unfamiliar with JSON RPC, fear not, there is noting complicated there. All the workflow falls to several steps:

1. Prepare JSON object, that describes what you want to do (create host, fetch graph, update item etc.);
2. Send this object using POST method to http://example.com/zabbix/api_jsonrpc.php, where http://example.com/zabbix/ is the
address of your Zabbix frontend;

3. Get a response with desired data in JSON format.

In most cases, you will do this from scripts, using your scripting language tools, but, of course, you can send requests ”by hand”,
using any of the JSON RPC tools you desire.

Actually, that’s it! All you need to know now, is how to authenticate for this and what format of JSON is Zabbix expecting to get
from you.

Basic request format

Simplified JSON request to Zabbix API looks like this:

{
"jsonrpc": "2.0",
"method": "method.name",
"params": {

"param_1_name": "param_1_value",
"param_2_name": "param_2_value"

},
"id": 1,
"auth": "159121b60d19a9b4b55d49e30cf12b81"

}

Lets look at it line by line:

• ”jsonrpc”: ”2.0” - this is a standard JSON PRC parameter identifying protocol version. It will remain unchanged for all your
requests;

• ”method”: ”method.name” - this parameter defines actual operation to perform. Common examples: ”host.create”,
”item.update” and so on;

• ”params” - here you pass the JSON object with parameters required for specific method. If you would like to create an
item, for example, ”name” and ”key_” parameters will be required. Possible parameters for each methods (and methods
themselves) are described Zabbix API documentation;

• ”id”: 1 - this field can be used to tie every JSON request to it’s response. The response will have the same ”id” as provided by
the request. It is useful when you are sending multiple requests at once. These are not required to be unique or sequential;

• ”auth”: ”159121b60d19a9b4b55d49e30cf12b81” - this is an authentication token to identify the user, accessing the API.
See Authenticating section below for more information.

471

http://example.com/zabbix/api_jsonrpc.php
http://example.com/zabbix/

Authenticating

So, now we know how to use the API. Let’s take a peek at host.create method and create a new host. Let’s send the request:

{
"jsonrpc": "2.0",
"method": "host.create",
"params": {

"host": "My first host name",
"ip": "192.168.3.1",
"port": 10050,
"useip": 1,
"groups": [

{
"groupid": 50

}
]

},
"id": 1

}

Zabbix responds:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "Not authorized"

},
"id": 1

}

What happened? Of course, no random person can send request to Zabbix to fetch the info or to modify something. That’s why
you need to be authenticated in order to do anything.

Good time to notice few things:

In case of any error, you get ”error” parameter in the result:

• ”code” parameter will always be -32602 (it’s the JSON error code for invalid parameters);
• ”message” reflects the same information that ”code” gave us and won’t differ too much;
• ”data” will describe what actually went wrong.

In case of a success, you will get ”result” parameter instead of ”error” (as you will see later).

So, how to get authenticated? All you need is to send a request, calling ”user.login” method and providing ”user” and ”password”
as parameters.

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix"

},
"id": 1

}

”Admin/zabbix” are default Zabbix credentials, but you have probably changed Admin’s password by how. Haven’t you?

So, we get the response:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "No API access"

472

},
"id": 1

}

Failure, again. What happened this time? Thing is, in Zabbix 1.8, users that are not in ”API access” group do not have an access
to Zabbix API by default. In order to use API with the given user, you need to set ”API access” to ”Enabled” for the user group of
that user or place that user into a predefined ”API access” group.

Now, when your user is a member of user group with ”API access” enabled, let’s try the same request again:

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix"

},
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": "7cd4e1f5ebb27236e820db4faebc1769",
"id": 1

}

Hooray! Authentication successful! What now? Now you can use hash, returned in ”result” parameter, as a proof of your rights,
by including it with every API call you make, as an ”auth” parameter.

Usage examples and common parameters

Now, that you are authenticated, you can go on and actually do something. First of all, let’s try and fetch some info.

Getting host groups Here is a simple request to get all available host groups ordered by name:

473

{
"jsonrpc": "2.0",
"method": "hostgroup.get",
"params": {

"output": "extend",
"sortfield": "name"

},
"id": 1,
"auth": "7cd4e1f5ebb27236e820db4faebc1769"

}

Notice, that ”method” contains ”hostgroup.get”, actual procedure that you are executing, and ”params” contain additional options.

”sortfield”, as you can guess, allows to sort result you get by chosen field.

”output”:”extend” means that you want to get all available info about each group. This, in a way, is similar to ”SELECT *” in SQL.
Possible options of ”output” are:

• ”extend” - get all info;
• ”shorten” - get only ids of an object;
• ”refer” - get id of an object and also ids of related objects;
• list of fields, like [”groupid”, ”name”] - get only listed fields.

Attention:
List of fields is only supported in Alert, DCheck, Host, DService, Screenitem, Template and Trigger get methods.

And don’t forget about the ”auth” hash that you got using ”user.login”.

The response of given request might look like this:

{
"jsonrpc": "2.0",
"result": [

{
"groupid": "5",
"name": "Discovered hosts",
"internal": "1"

},
{

"groupid": "2",
"name": "Linux servers",
"internal": "0"

},
{

"groupid": "1",
"name": "Templates",
"internal": "0"

},
{

"groupid": "3",
"name": "Windows servers",
"internal": "0"

},
{

"groupid": "4",
"name": "Zabbix servers",
"internal": "0"

}
],
"id": 1

}

These are standard groups, created by initial Zabbix configuration. Notice ”groupid” field, the ”XXXXid” fields are unique system
identifiers, that will be used to address the object from another requests. See the next section for explanation.

474

Creating host We fetched the host groups, now let’s try creating something. Let’s create a host, that will be inside of the user
groups ”Linux servers” and ”Zabbix servers”. The request will look like this:

{
"jsonrpc": "2.0",
"method": "host.create",
"params": {

"host": "My new fancy host that I have created using API",
"ip": "192.168.3.1",
"port": 10050,
"useip": 1,
"groups": [

{
"groupid": 2

},
{

"groupid": 4
}

]
},
"id": 1,
"auth": "7cd4e1f5ebb27236e820db4faebc1769"

}

Notice, that we are using ”groupid” fields that we got earlier, to reference the groups we want our host to be in. We, say, that we
want host to be in groups with ids 2 (Linux servers) and 4 (Zabbix servers). This is the way you will be working with all related
objects.

If everything goes right, you will get a response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10051"

]
},
"id": 1

}

”hostids” list contains ids of the elements we have just created. In our case, we were creating just one host and got it’s id - 10051.
You can use it in future requests.

Updating item Of course, if you can create something, you should be able to update or delete something as well. And you are.
Lest try and update an item. I have created item with description ”agent.ping” at ”My new fancy host that I have created using
API” we created earlier, so we can play around with it. First, let’s take a look at it:

Request:

{
"jsonrpc": "2.0",
"method": "item.get",
"params": {

"output": "extend",
"filter": {

"description": "agent.ping"
},
"hostids": [

"10051"
]

},
"id": 1,
"auth": "7cd4e1f5ebb27236e820db4faebc1769"

}

Note, that here we have used ”filter” parameter, to specify item description and ”hostids”, to say that we are interested in item

475

that is on the host we just created (it had and ID of 10051, remember?)

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hosts": [

{
"hostid": "10051"

}
],
"itemid": "22162",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"snmp_port": "161",
"hostid": "10051",
"description": "agent.ping",
"key_": "agent.ping",
"delay": "30",
"history": "90",
"trends": "365",
"lastvalue": null,
"lastclock": null,
"prevvalue": null,
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "",
"multiplier": "0",
"delta": "0",
"prevorgvalue": null,
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "0",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "0",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0"

}
],
"id": 1

}

Wow, much info there. Let’s try and update item, by changing ”snmp_port” to 162 and ”item type” to SNMPV1. item.update
method is the right tool for this.

Request:

476

{
"jsonrpc": "2.0",
"method": "item.update",
"params": {

"itemid": "22162",
"snmp_port": "162",
"type": 1

},
"id": 1,
"auth": "7cd4e1f5ebb27236e820db4faebc1769"

}

Note, that we have specified three parameters: ”itemid”, so that Zabbix would know which item to update (don’t forget this one!)
and the two parameters we want to change. By the way, how did I know, that ”type”: 1 means SNMPV1? Well, it’s all in general
item section.

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"22162"

]
},
"id": 1

}

As usual, Zabbix returned an ID of affected item.

Zabbix manpages

These are Zabbix manpages for Zabbix processes.

zabbix_agentd

Section: Maintenance Commands (8)
Updated: 5 July 2011
Index Return to Main Contents

NAME

zabbix_agentd - Zabbix agent daemon.

SYNOPSIS

zabbix_agentd [-hpV] [-c <config-file>] [-t <item key>]

DESCRIPTION

zabbix_agentd is a daemon for monitoring of various server parameters.

Options -c, --config <config-file>
Use the alternate config-file instead of /etc/zabbix/zabbix_agentd.conf. Use absolute path.

-p, --print
Print known items and exit.

-t, --test <item key>
Test single item and exit.

477

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/etc/zabbix/zabbix_agentd.conf
Default location of Zabbix agent configuration file.

SEE ALSO

zabbix_get(8), zabbix_proxy(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION
Options

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 13:34:23 GMT, September 26, 2011

zabbix_get

Section: Maintenance Commands (8)
Updated: 5 July 2011
Index Return to Main Contents

NAME

zabbix_get - Zabbix get utility.

SYNOPSIS

zabbix_get [-hV] [-s <host name or IP>] [-p <port number>] [-I <IP address>] [-k <item key>]

DESCRIPTION

zabbix_get is a command line utility for getting data from a remote Zabbix agent.

478

Options -s, --host <host name or IP>
Specify host name or IP address of a host.

-p, --port <port number>
Specify port number of agent running on the host. Default is 10050.

-I, --source-address <IP address>
Specify source IP address.

-k, --key <item key>
Specify key of item to retrieve value for.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

EXAMPLES

zabbix_get -s 127.0.0.1 -p 10050 -k system.cpu.load[all,avg1]

SEE ALSO

zabbix_agentd(8), zabbix_proxy(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION
Options

EXAMPLES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 13:34:23 GMT, September 26, 2011

zabbix_proxy

Section: Maintenance Commands (8)
Updated: 4 August 2011
Index Return to Main Contents

NAME

zabbix_proxy - Zabbix proxy daemon.

479

SYNOPSIS

zabbix_proxy [-hV] [-c <config-file>] [-R <option>]

DESCRIPTION

zabbix_proxy is a daemon used for remote data collection.

Options -c, --config <config-file>
Use the alternate config-file instead of /etc/zabbix/zabbix_proxy.conf.

-R, --runtime-control <option>
Perform administrative functions according to option.

Runtime control options

config_cache_reload
Reload configuration cache. Ignored if cache is being currently loaded. Active Zabbix proxy will connect to the Zabbix server and
request configuration data. Default configuration file (unless -c option is specified) will be used to find PID file and signal will be
sent to process, listed in PID file.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/etc/zabbix/zabbix_proxy.conf
Default location of Zabbix proxy configuration file.

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION

Options

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 13:34:23 GMT, September 26, 2011

480

zabbix_sender

Section: Maintenance Commands (8)
Updated: 5 July 2011
Index Return to Main Contents

NAME

zabbix_sender - Zabbix sender utility.

SYNOPSIS

zabbix_sender [-hpzvIV] {-kso | [-T] -i <inputfile>} [-c <config-file>]

DESCRIPTION

zabbix_sender is a command line utility for sending data to a remote Zabbix server. On the Zabbix server an item of type
Zabbix trapper should be created with corresponding key. Note that incoming values will only be accepted from hosts specified
in Allowed hosts field for this item.

Options -c, --config <config-file>
Specify agent configuration file for reading server details.

-z, --zabbix-server <server>
Hostname or IP address of Zabbix server.

-p, --port <port>
Specify port number of server trapper running on the server. Default is 10051.

-s, --host <host>
Specify host name as registered in Zabbix front-end. Host IP address and DNS name will not work.

-I, --source-address <IP>
Specify source IP address.

-k, --key <key>
Specify item key to send value to.

-o, --value <value>
Specify value.

-i, --input-file <inputfile>
Load values from input file. Specify - for standard input. Each line of file contains whitespace delimited: <hostname> <key>
<value>. Specify - in <hostname> to use hostname from configuration file or --host argument.

-T, --with-timestamps
Each line of file contains whitespace delimited: <hostname> <key> <timestamp> <value>. This can be used with --input-file
option. Timestamp should be specified in Unix timestamp format.

-r, --real-time
Send values one by one as soon as they are received. This can be used when reading from standard input.

-v, --verbose
Verbose mode, -vv for more details.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

481

EXAMPLES

zabbix_sender -c /etc/zabbix/zabbix_agentd.conf -s Monitored Host -k mysql.queries -o 342.45

Send 342.45 as the value formysql.queries key in Monitored Host host using Zabbix server defined in agent daemon configu-
ration file.

zabbix_sender -z 192.168.1.113 -i data_values.txt

Send values from file data_values.txt to server with IP 192.168.1.113. Host names and keys are defined in the file.

echo - hw.serial.number 1287872261 SQ4321ASDF | zabbix_sender -c /etc/zabbix/zabbix_agentd.conf -T -i -

Send a timestamped value from the commandline to Zabbix server, specified in the agent daemon configuration file. Dash in the
input data indicates that hostname also should be used from the same configuration file.

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_proxy(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION
Options

EXAMPLES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 13:34:23 GMT, September 26, 2011

zabbix_server

Section: Maintenance Commands (8)
Updated: 4 August 2011
Index Return to Main Contents

NAME

zabbix_server - Zabbix server daemon.

SYNOPSIS

zabbix_server [-hV] [-c <config-file>] [-n <nodeid>] [-R <option>]

DESCRIPTION

zabbix_server is a core daemon of Zabbix software.

482

Options -c, --config <config-file>
Use the alternate config-file instead of /etc/zabbix/zabbix_server.conf.

-n, --new-nodeid <nodeid>
Convert database data to new nodeid.

-R, --runtime-control <option>
Perform administrative functions according to option.

Runtime control options

config_cache_reload
Reload configuration cache. Ignored if cache is being currently loaded. Default configuration file (unless -c option is specified) will
be used to find PID file and signal will be sent to process, listed in PID file.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/etc/zabbix/zabbix_server.conf
Default location of Zabbix server configuration file.

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_proxy(8), zabbix_sender(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION

Options

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 13:34:23 GMT, September 26, 2011

Zabbix Protocols

This is description of all protocols used by Zabbix 1.8 components.

There are some definitions used in the protocol details:

<HEADER> - "ZBXD\x01" (5 bytes)
<DATALEN> - data length (8 bytes). 1 will be formatted as 01/00/00/00/00/00/00/00 (eight bytes in HEX, 64 bit number)

483

1 Zabbix Agent

Zabbix uses JSON based communication protocol for communication with Zabbix Agent.

1.1 Passive checks Passive check is a simple data request. Zabbix Server (or Proxy) asks for a data, for example, CPU load,
and Zabbix Agent sends the result back to the Server.

Server Request

<item key>\n

Agent Response

<HEADER><DATALEN><DATA>

For example:

1. Server opens TCP connection
2. Server sends agent.ping\n
3. Agent reads the request and responds with <HEADER><DATALEN>1
4. Server processes data to get the value, ’1’ in our case
5. TCP connection is closed

1.2 Active checks Active checks requires more complex processing. The Agent must retrieve list of items for independent
processing first. It also periodically sends new values to the Server.

1.2.1 Get list of items Agent Request

<HEADER><DATALEN>{
"request":"active checks",
"host":"<hostname>"

}

Server Response

{
"response":"success",
"data":[
{

"key":"log[\/home\/zabbix\/logs\/zabbix_agentd.log]",
"delay":"30",
"lastlogsize":"0"

},
{

"key":"agent.version",
"delay":"600"

}
]

}

The Server must respond with success. For each returned item, key and delay must exist. For items having type ”Log”, the
lastlogsize must exist as well.

For example:

1. Agent opens TCP connection
2. Agent asks for the list of checks
3. Server responds with a list of items (item key, delay)
4. Agent parses the response
5. TCP connection is closed
6. Agent starts periodical collection of data

1.2.2 Send collected data Agent Sends

<HEADER><DATALEN>{
"request":"agent data",
"data":[

484

{
"host":"<hostname>",
"key":"log[\/home\/zabbix\/logs\/zabbix_agentd.log]",
"value":" 13039:20090907:184546.759 zabbix_agentd started. ZABBIX 1.6.6 (revision {7836}).",
"lastlogsize":80,
"clock":1252926015

},
{

"host":"<hostname>",
"key":"agent.version",
"value":"1.6.6",
"clock":1252926015

}
],
"clock":1252926016

}

Server Response

<HEADER><DATALEN>{
"response":"success",
"info":"Processed 2 Failed 0 Total 2 Seconds spent 0.002070"

}

For example:

1. Agent opens TCP connection
2. Agent sends list of values
3. Server processes the data and sends status back
4. TCP connection is closed

485

	Zabbix Manual
	Copyright notice
	1 About
	1 Overview of Zabbix
	2 Goals and Principles
	3 Installation and Upgrade Notes
	4. What's new in Zabbix 1.8
	5 What's new in Zabbix 1.8.1
	6 What's new in Zabbix 1.8.2
	7 What's new in Zabbix 1.8.3
	8 What's new in Zabbix 1.8.4
	9 What's new in Zabbix 1.8.5
	10 What's new in Zabbix 1.8.6
	11 What's new in Zabbix 1.8.7
	11 What's new in Zabbix 1.8.8
	11 What's new in Zabbix 1.8.9
	12 What's new in Zabbix 1.8.10
	13 What's new in Zabbix 1.8.11
	14 What's new in Zabbix 1.8.12
	15 What's new in Zabbix 1.8.13
	15 What's new in Zabbix 1.8.14
	16 What's new in Zabbix 1.8.15
	17 What's new in Zabbix 1.8.16
	18 What's new in Zabbix 1.8.17
	19 What's new in Zabbix 1.8.18
	20 What's new in Zabbix 1.8.20
	21 What's new in Zabbix 1.8.21
	22 What's new in Zabbix 1.8.22

	2 Installation
	1 How to Get Zabbix
	2 Requirements
	3 Components
	4 Installation from Source
	5 Upgrading
	6 Using Zabbix appliance

	3 Zabbix Processes
	1 Zabbix Server
	2 Zabbix Proxy
	3 Zabbix Agent (UNIX, Standalone daemon)
	4 Zabbix Agent (UNIX, Inetd version)
	5 Zabbix Agent (Windows)
	6 Zabbix Sender (UNIX)
	7 Zabbix Get (UNIX)
	8 Special notes on "Include" configuration parameter

	4 Configuration
	1 Actions
	2 Macros
	3 Applications
	4 Graphs
	5 Media
	6 Host templates
	7 Host groups
	8 Host and trigger dependencies
	10 User Parameters
	11 Windows performance counters
	12 Triggers
	13 Screens and Slide Shows
	14 IT Services
	15 User permissions
	16 The Queue
	17 Utilities
	18 Regular expressions
	19 Items
	20 Frontend definitions
	21 Suffixes
	22 Time period specification

	5 Quick Start Guide
	1 Login
	2 Add user
	3 Email settings
	4 Monitoring an agent-enabled host
	5 Set up notifications

	6 XML Import and Export
	1 Goals
	2 Overview
	3 Host export
	4 Host import
	5 Map export and import
	6 Screen export and import

	7 Tutorials
	1 Extending Zabbix Agents
	2 Monitoring of log files
	3 Remote commands
	4 Monitoring of Windows Services

	9 WEB Monitoring
	1 Goals
	2 Overview
	3 WEB Scenario
	4 WEB Step
	5 Real life scenario

	10 Log File Monitoring
	1 Overview
	2 How it works

	11 Discovery
	1 Goals
	2 Overview
	3 How it works
	4 Network discovery rule
	5 Real life scenario

	12 Advanced SNMP Monitoring
	1 Special OIDs
	2 Use of dynamic indexes

	13 Monitoring of IPMI devices
	1 Goals
	2 IPMI parameters
	3 IPMI actions

	14 Use of Proxies
	1 Why use Proxy?
	2 Proxy v.s. Node
	3 Configuration

	15 Distributed Monitoring
	1 Goals
	2 Overview
	3 Configuration
	4 Platform independence
	5 Configuration of a single Node
	6 Switching between nodes
	7 Data flow
	8 Performance considerations

	16 Maintenance mode for Zabbix GUI
	1 Goals
	2 Configuration
	3 How it looks like

	17 WEB Interface
	1 Creating your own theme
	2 Configuration
	3 Administration
	4 Page parameters

	18 Performance Tuning
	1 Real world configuration
	2 Performance tuning

	19 Cookbook
	1 General Recipes
	2 Monitoring of Specific Applications
	3 Integration

	20 Troubleshooting
	1 Error and warning messages
	2 Sound in browsers

	21 Escalations and repeated notifications
	1 Overview
	2 Simple messages
	3 Remote commands
	4 Repeated notifications
	5 Delayed notifications
	6 Escalate to Boss
	7 Complex scenario

	Zabbix API
	Action
	create()
	delete()
	exists()
	get()
	update()

	Alert
	get()

	APIInfo
	version()

	Application
	create()
	delete()
	exists()
	get()
	massAdd()
	update()

	DCheck
	get()

	DHost
	delete()
	get()

	DRule
	create()
	delete()
	exists()
	get()
	update()

	DService
	create()
	delete()
	exists()
	get()
	update()

	Event
	acknowledge()
	delete()
	get()

	Graph
	create()
	delete()
	exists()
	get()
	update()

	Graphitem
	get()

	History
	delete()
	get()

	Host
	create()
	delete()
	exists()
	get()
	massAdd()
	massRemove()
	massUpdate()
	update()

	Hostgroup
	create()
	delete()
	exists()
	get()
	massAdd()
	massRemove()
	massUpdate()
	update()

	Image
	create()
	delete()
	exists()
	get()
	update()

	Item
	create()
	delete()
	exists()
	get()
	update()

	Maintenance
	create()
	delete()
	exists()
	get()
	update()

	Map
	create()
	delete()
	exists()
	get()
	update()

	Mediatype
	create()
	delete()
	get()
	update()

	Proxy
	get()

	Screen
	create()
	delete()
	exists()
	get()
	update()

	Script
	create()
	delete()
	execute()
	get()
	update()

	Template
	create()
	delete()
	exists()
	get()
	massAdd()
	massRemove()
	massUpdate()
	update()

	Trigger
	addDependencies()
	create()
	delete()
	deleteDependencies()
	exists()
	get()
	update()

	User
	addMedia()
	authenticate()
	create()
	delete()
	deleteMedia()
	get()
	login()
	logout()
	update()
	updateMedia()
	updateProfile()

	Usergroup
	create()
	delete()
	exists()
	get()
	massAdd()
	massRemove()
	massUpdate()
	update()

	Usermacro
	createGlobal()
	deleteGlobal()
	deleteHostMacro()
	get()
	massAdd()
	massRemove()
	massUpdate()
	updateGlobal()

	Example API session
	Getting started with Zabbix API
	What is Zabbix API
	Using JSON RPC
	Basic request format
	Authenticating
	Usage examples and common parameters

	Zabbix manpages
	zabbix_agentd
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	Index

	zabbix_get
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	AUTHOR
	Index

	zabbix_proxy
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	Index

	zabbix_sender
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	AUTHOR
	Index

	zabbix_server
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	Index

	Zabbix Protocols
	1 Zabbix Agent

